
Thorp KE, Thorp JA, Thorp EM, Thorp MM, Walker PR. COVID-19: Energy, Protein Folding & Prion Disease. G Med Sci. 2022; 3(1): XXXX-XXXX.
https://www.doi.org/10.46766/thegms.neuro.xxxxxxxxx

118

ISSN 2692-4374 DOI https://www.doi.org/10.46766/thegms

Neurology | Review

COVID-19: Energy, Protein 
Folding & Prion Disease

K. E. Thorp1, James A. Thorp2*, Elise M. Thorp3, Margery M. 
Thorp4, Paul R. Walker5

1MD. Department of Radiology, Sparrow Health System, Lansing, MI.
2MD. Department of Obstetrics and Gynecology, Division of Maternal Fetal 
Medicine, Sisters of St. Mary’s Health System, St. Louis, MO.
3BS, FNTP. Williamston, MI.
4JD MACP. Law Firm of Margery M. Thorp, PLLC, Gulf Breeze, FL.
5BSME, MSEE

Submitted: 31 August 2022
Approved:  XXXXXXXXXX 
Published:  XXXXXXXXXX

Address for correspondence: 
James A. Thorp, Department of Obstetrics and Gynecology, 
Division of Maternal Fetal Medicine, Sisters of St. Mary’s 
Health System, St. Louis, MO

How to cite this article: Thorp KE, Thorp JA, Thorp EM, 
Thorp MM, Walker PR. COVID-19: Energy, Protein Folding & 
Prion Disease. G Med Sci. 2022; 3(1): XXXX-XXXX. 
https://www.doi.org/10.46766/thegms.neuro.xxxxxxxxx

Copyright: © 2022 K. E. Thorp, James A. Thorp, Elise M. 
Thorp, Margery M. Thorp, Paul R. Walker. This is an Open 
Access article distributed under the Creative Commons 
Attribution License, which permits unrestricted use, 
distribution, and reproduction in any medium, provided the 
original work is properly cited.

 https://www.thegms.co

Submitted: 10 April 2023
Approved: 02 May 2023    
Published: 03 May 2023

Address for correspondence: K. E. Thorp, MD, 
k.t@earthlink.net

How to cite this article: Thorp KE, Thorp JA, Northrup C, Thorp 
EM, Ajovi SE, Kepros JP. Energy Dynamics in Chronic Heart 
Failure, Chronic Kidney Disease & the Cardiorenal Syndrome: A 
New Causal Paradigm. G Med Sci. 2023; 4(1):290-347. 
https://www.doi.org/10.46766/thegms.medphys.23041001 

Copyright: © 2023 K. E. Thorp, James A. Thorp, Christiane 
Northrup, Elise M. Thorp, Ajovi Scott-Emuakpor, John P. Kepros. 
This is an Open Access article distributed under the Creative 
Commons Attribution License, which permits unrestricted use, 
distribution, and reproduction in any medium, provided the 
original work is properly cited.

Medical Physics | Review

Energy Dynamics in Chronic Heart 
Failure, Chronic Kidney Disease & 
the Cardiorenal Syndrome: A New 
Causal Paradigm

K. E. Thorp1*, James A. Thorp2, Christiane 
Northrup3, Elise M. Thorp4, Ajovi 
Scott-Emuakpor5, John P. Kepros6

1MD, Department of Radiology, Sparrow Health System, 
Lansing, MI.

2MD, Department of Obstetrics and Gynecology, Division of 
Maternal Fetal Medicine, Sisters of St. Mary’s Health System, 
St. Louis, MO.  

3MD, Former Assistant Professor Obstetrics and Gynecology, 
Vermont College of Medicine, Maine Medical Center, 
Yarmouth, ME 04096.

4 BS FNTP. Williamston, MI.

5MD, PhD, Department of Pediatrics and Human 
Development, College of Human Medicine, Michigan State 
University, East Lansing, MI  48823.

6MD, Trauma Health Director, Honor Health System, 
Scottsdale, AZ.

Thorp KE, Thorp JA, Northrup C, Thorp EM, Ajovi SE, Kepros JP. Energy Dynamics in Chronic Heart Failure, Chronic Kidney Disease & the Cardiorenal 
Syndrome: A New Causal Paradigm. G Med Sci. 2023; 4(1):290-347. https://www.doi.org/10.46766/thegms.medphys.23041001

290

INTRODUCTION

Societies across the globe now confront a rising 
burden of chronic disease on a scale never before 
seen in history. In recent decades deeply troubling 
increases in conditions such as the metabolic 
syndrome, diabetes, obesity, autoimmune disease, 
and chronic organ syndromes like heart failure (HF), 
chronic kidney disease (CKD), and non-alcoholic 

fatty liver have completely erased any putative 
gains 20th century medical science might have 
made in the control and prevention of disease. 
 
According to the US Centers for Disease Control, 
90% of the $4.1 trillion annual US healthcare 
expenditures is spent on chronic disease care 
[1]. There are no effective therapies for these 
conditions and treatment is by-and-large palliative. 
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Two of the most prevalent and complex syndromes 
now challenging medical science are HF and CKD.

First designated by the WHO as an emerging 
epidemic in 1997, HF continues to spread globally 
and now afflicts an estimated 64 million people 
worldwide and about 6-7 million in the US. 
HF is a debilitating syndrome characterized by 
functional impairments that impact quality of life 
and the ability to engage in daily activities. HF is 
now the leading cause for hospitalization (and re-
hospitalization) in people over 60 years of age. 
Healthcare costs in the US continue to soar and are 
pegged to reach nearly $70 billion by 2030 [2-4].  

CKD is an insidious, progressive disorder affecting 
about 850 million people worldwide – roughly 10% 
of the global population. In the US CKD affects about 
11-14% of the adult population or about 37 million 
people. In the last three decades its prevalence 
has grown by nearly 30%. Many countries are now 
unable meet rising demand for dialysis treatment. 
Risk factors include diabetes and hypertension 
which also continue to escalate. According to the 
CDC expenditures for CKD in 2019 reached $87.2 
billion with an additional $37.3 billion directed 
to end-stage kidney disease and treatments like 
dialysis and transplantation [5-6].  

The contemporary predicament becomes more 
dire once one recognizes the failure of 20th century 
medical scientists to even accurately describe 
how the heart and kidneys function. The causal 
models they advanced to explain the functional 
deteriorations in HF and CKD are now widely 
recognized to have been wrong. Based on their 
flawed theories, existing treatments for these 
conditions are only band-aids that may or may not 
prevent downstream complications while having 
little or no effect on the underlying disease process. 
One cannot discuss the burgeoning epidemic of 
chronic disease without implicating experimental 
science. 

Of equal concern is the failure of medical scientists 
to incorporate evidence that runs counter to 
their encrusted dogma. For 120 years they 
have clung to their archaic molecular/cellular 
paradigm, continuing to beat this long-dead horse, 
even though it fails to explain much of what is 
encountered in the laboratory or in day-to-day 
practice. It is said that consciousness always wakes 
up late. Certainly, this applies to medical science 
and the epidemic of chronic disease.

In the 1980s experimental evidence emerged 
that overturned the reigning 20th century model 
of cardiac function and, furthermore, pointed 
to the presence of an organized energy field in 
the blood originating through the contraction 
and dilation cycles of the heart. And yet, in 
a manner reminiscent of how, for thirteen 
centuries, Ptolemaic astronomers continued to 
explain planetary motion on the basis of their 
revolution around the earth, scientists persist in 
their attempts to explain energy dynamics on the 
basis of cellular and molecular mechanisms. The 
Ptolemaic system eventually became so convoluted 
that even astronomers didn’t understand it. And 
once the correct explanation surfaced, geocentric 
astronomy collapsed into a heap and became a 
relic of history. Modern medical science seems 
destined to share the same fate.

In his acclaimed work The Structure of Scientific 
Revolutions (1962) science historian Thomas Kuhn 
describes the successive rise and fall of scientific 
paradigms [7]. Given that it is impossible for 
scientists to know what lies outside their frame of 
reference, by necessity all scientific theories are 
provisional and incomplete. Eventually scientists 
encounter phenomena their knowledge cannot 
explain necessitating cultivation of new knowledge 
and revision of spent theories. The entire history 
of experimental science consists of a series of 
conceptual boom-and-bust cycles.      
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The epidemic of chronic disease has laid bare 
the flaws of the cellular/molecular perspective 
as well as the failures of experimental scientists 
to make proper adjudications. As in the case of 
geocentric astronomy, once evidence emerges 
that contradicts stated assumptions, a scientific 
theory is rendered invalid regardless of whether or 
not the science community chooses to accept it. 
We call such disruptive and revolutionary events 
a ‘paradigm collapse’. In such circumstances the 
only option for scientists is to either acquiesce to 
reality or engage in denial and perpetuate what 
then becomes a collectively-shared delusion.

In this paper we examine HF and CKD through 
the lens of a new causal paradigm: as a conjoined 
energy deficiency syndrome whose progression 
is governed by impaired energy generation by 
the cardiovascular system leading to subsequent 
deterioration of blood energy dynamics. Due to 
the immense complexity of this topic our intention 
is not to go into unnecessary and laborious detail 
on specific cellular and molecular aspects of the 
syndromes but, instead, to use illustrative examples 
to establish overarching principles and to highlight 
the connection between the deteriorating energy 
field and all resultant aberrations. Indeed, once 
the energy dynamics are recognized cellular and 
molecular descriptions become superfluous. 
Our use of the term ‘causal’ is meant to imply 
that future breakthroughs in the treatment (and 
potential reversal) of these complex disease states 
necessarily entails recognition and correction of 
underlying energy deficits.

ENERGY FIELD DYNAMICS

One of the most significant turn of events in 
20th century experimental medicine took place 
in the 1980s without most medical scientists 
even suspecting that the ground beneath their 
feet had begun to crumble. For most of the 20th 

century scientists conceived the heart to function 
in the manner of a mechanical pump, with blood 
propelled forward through the arteries during the 
systolic phase of the cardiac cycle. The diastolic 
phase of the cycle, on the other hand, was said to 
represent a period of passive relaxation.  

This concept was originally advanced by William 
Harvey in 1628 in his seminal work On The Motions 
of the Heart in which he describes his discovery of 
the circulation of the blood [8]. Harvey’s model 
was uncritically accepted by English physiologist 
Ernest Starling in the early 20th century and 
thereafter became dogma. The problem with the 
Harvey-Starling concept of cardiac function is that 
it doesn’t explain how blood returns from the veins 
to the right side of the heart – just a small detail 
scientists overlooked for 350 years. 

In the early 1980s physiologists discovered negative 
intraventricular pressures, i.e., a suction force, in 
the early diastolic phase indicating that diastole 
was not a time of passive relaxation but, instead, a 
period in which blood was actively drawn forward 
through the veins into the ventricular chamber 
[9-12]. In order for the ventricle to pump blood 
through the arteries it must first contain blood. 
A handful of studies later found the presence of 
spiral flow currents in arteries and veins which can 
only be explained on the basis of a suctional force 
[13-26]. 

By the late 1980s numerous studies affirmed 
the primacy of diastole in the cardiac cycle 
and, intriguingly, found that impaired outward 
movement of the ventricular and arterial walls, 
aka ‘diastolic dysfunction’ was the defining feature 
of a wide range of chronic conditions including 
hypertension, diabetes, obesity, depression, 
cancers, autoimmune diseases, as well as organ 
failure syndromes like HF and CKD [27, 28].   
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During its cycles of contraction and dilation the 
heart generates an electromagnetic field which is 
responsible for diastolic expansion. In a series of 
earlier articles, we describe mechanisms at play in 
this phenomenon [29-31]. For over a century it has 
been recognized that the heart and blood contain 
large iron stores and, while iron’s role in various 
chemical reactions has been extensively detailed, 
there has been little discussion as to whether it 
might play a broader role.  

Equally the question arises as to the function 
served by nerves that course over the surface of the 
heart. Cardiologists claim these nerves cause the 
heart to contract but is this correct? As early as the 
2nd century AD Roman physician Galen observed in 
animal experiments that when the heart was cut 
out and placed in a fluid bath it continued to dilate 
and contract, what is called cardiac automaticity. 
By the same token, transplanted hearts continue 
to function in recipients even though nerve 
conduction has been interrupted.  

What happens during systolic contraction of 
the ventricle is identical to what happens during 
the induction of an external magnetic field by 
electrification of ferrous objects. As the ventricle 
contracts and iron stores are brought into closer 
apposition iron nuclei in the heart muscle and 
blood align and process synchronously on the basis 
of field interactions. Electrical potentials in the 
nerves saturate the field and induce formation of a 
three-dimensional magnetic field in the ventricular 
chamber leading to its expansion. Blood-borne 
energy dynamics also account for the phenomenon 
known as ischemic preconditioning (PC).

In 1986 Charles Murry et al., seeking to elucidate 
mechanisms at play in heart attack, tested whether 
intermittently reopening the coronary arteries to 
allow for brief return of blood flow altered the 
course of cellular injury [32]. In a control group of 
dogs, a coronary artery was clamped for 40 minutes 

to assess the extent of infarct damage. Another 
group underwent a series of four 5-minute arterial 
occlusions interrupted by 5-minute intervals of 
reperfusion. Afterward the artery was clamped for 
40 minutes. To their complete surprise, animals 
that received PC pulses had only about 25% of 
damage as the control group.  

The protection afforded by PC has been 
substantiated in many studies. When the PC 
sequence is applied prior to a prolonged ischemic 
episode a period of protection ensues that lasts 
about 2-3h during which ischemia-mediated 
damage is markedly reduced. Biochemical analysis 
suggests that PC slows the rate of ATP consumption, 
lactate accumulation, and development of 
tissue acidosis. Interestingly, diastolic function is 
preserved and the myocardium becomes resistant 
to potentially lethal arrhythmias. Such phenomena 
can only be explained on the basis of an influx of 
energy into the cardiovascular system [33-42].  
 
A 1993 study found that PC pulses applied to one 
vascular territory of the heart protected the rest 
of the heart from prolonged arterial occlusion 
[43]. Several years later another study found 
reduction in myocardial infarct size in rabbits after 
administration of PC pulses to skeletal muscle [44]

. 
Reports soon followed describing protection in 
organs besides the heart after PC pulses in distant 
vascular territories. Remote PC effects involving 
brain, liver, intestines, kidneys, stomach and lungs 
were described [45-58].  

The PC response originates in the blood and 
spreads throughout the body. PC pulses applied 
to any vascular bed confer systemic resistance 
to prolonged ischemia. Remote PC induced by 
serial inflation-deflation of a blood pressure cuff 
in the extremities is now used prior to surgical 
procedures to limit operative and postoperative 
injury [59]. Reports suggest beneficial effects 
are transferable from one animal to another by 
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transfusion of blood or bodily fluids [60-62]. It 
became recognized that the PC response could be 
induced by different means other than ischemia: 
hyperthermia, exercise, cardiac pacing, ethanol, 
volatile anesthetics, and a host of others including 
ozone [63-81].

   

A 1996 study ascribing a complex temporal 
signature to the PC phenomenon added another 
spin to the evolving picture [82]. The initial 
period of heightened resistance to ischemic injury 
disappears after about 2-3h but then protective 
effects recur in echo-like fashion about 24h later 
and persist for up to 48-72h; this is called the 
second window of protection. Researchers remain 
baffled as to its basis [83, 84]. As effects are 
associated with appearance of different mediator 
substances in the blood it appears to involve gene 
expression.

PC comprises two opposing aspects: the immediate 
effect of the injurious agent and a protective 
counter-response in the blood to mitigate its 
impact. A dramatic example of the PC effect can 
be seen in the case of ozone, perhaps one of the 
most powerful PC agents yet discovered. We have 
documented its effects in previous papers. The 
protective response is mediated by red blood cells 
(RBCs).

RBCs are the first to experience the oxidative 
effects of ozone and to mount a response. Upon 
contact with ozonated fluids in the blood, RBCs 
undergo a transient dose-dependent decrease in 
energy flux, estimated to be in the 5-25% range 
over a period of 15-20 minutes, and then respond 
with a rebound surge of heightened metabolism 
and energy release along with outpouring of 
antioxidant substances. Ozone induces ATP and 
NADPH synthesis which spill into the blood to 
neutralize the oxidizing effects of ozone [85-89].

Heightened energy output by RBCs translates 
into increased blood flow and energy delivery 
to peripheral tissues. RBCs contain the enzyme 
nitric oxide (NO) synthase and generate large 
amounts of NO in response to oxidative stress 
that, in conjunction with their energy release into 
the blood, promotes diastolic function [90-101]. 
Ozone-related oxidative stress triggers activation 
of hypoxia inducible factor (HIF) which, in turn, 
augments release of vascular endothelial growth 
factor (VEGF) and erythropoietin (EPO) which 
stimulate angiogenesis, blood flow and oxygen 
delivery to peripheral tissues [102, 103].

  

The first phase of the PC response, aimed at 
generating increased blood energy levels, mediates 
subsequent events at the cellular level. Energy 
currents, carried in the extracellular fluid (ECF) 
space, enter cells via ion channel mechanisms and, 
in short order, enhance mitochondrial function 
and cellular energy metabolism as well as inducing 
a plethora of genes that counteract oxidative 
stress. The second window of protection is driven 
primarily by events at the cellular level as a result 
of gene induction [104-110].

The most striking effect of ozone PC is mitigation 
of the inflammatory response via suppression of 
NLRP3 inflammasome activity. All inflammation 
begins at the cellular level and is related to 
impaired mitochondrial function due to insufficient 
energy flow into the cell. Abnormal inflammasome 
activation is a prominent feature of numerous 
chronic diseases [111-115]. Inflammation in 
conjunction with impaired diastolic function is 
an invariant accompaniment of HF and CKD. The 
immediate effect of PC is augmentation of energy 
flow into cells throughout the body and alleviation 
of mitochondrial dysfunction [116-121].

PC is now regarded as the most powerful form 
of innate body-wide protection. It has been over 
three decades since its discovery and 10,000’s of 
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reports in the literature have detailed its various 
aspects. Molecular biologists have identified 
dozens of potential chemical mediators and various 
mechanisms—heat shock proteins, adenosine, 
various neurotransmitters, EPO, NO, oxygen-
derived free radicals, ATP-sensitive potassium 
channels to name a few—and yet still have no 
compelling explanation [122-132]. Thomas Kuhn 
described this as ‘paradigm-induced blindness’. 
But PC isn’t just a protective mechanism intended 
to counteract physiological stresses. It is the means 
by which the cardiovascular system and blood 
function day-in and day-out to maintain energy 
flux into tissues throughout the body. Impairment 
of this primary energy generating system plays 
a causal role in the genesis of acute and chronic 
disease.

MICROVASCULAR DYSFUNCTION

In the 1970s and 80s cardiologists began to 
observe increasing numbers of people who 
presented with typical angina-like chest pain and 
who, on exercise stress-testing, developed ECG 
abnormalities consistent with myocardial ischemia 
but, surprisingly, were found to have normal 
appearing coronary arteries on angiography.     

Named Cardiac Syndrome X in the 1970s, 
symptoms result from diastolic dysfunction at 
the microvascular level. Overall about 20-30% 
of individuals with angina have no discernable 
coronary plaques. Microvascular dysfunction is 
present in most or all of these people. In many 
cases blood inflammatory markers like C-reactive 
protein are also elevated. A preponderance of 
those affected are post-menopausal women [133-
136].  

Originally thought to be benign it is now regarded as 
a progressive condition linked to poor quality of life 
and increased mortality. As the micro-circulation 

cannot be directly imaged diagnosis is made 
largely by exclusion. Treatment is challenging and 
symptoms often refractory to medications which 
typically afford relief in other cases of angina.

Cardiac Syndrome X was another wake-up call 
for medical scientists that went unheeded. At the 
time angina was thought to be a result of arterial 
plaques in large and medium-sized arteries that 
restricted blood flow to the heart muscle. Based 
on this pathologic mechanism their solution was 
to surgically bypass the affected artery or to place 
stents across the lesion. But such mechanical 
approaches don’t impact the underlying functional 
disturbance. It is now recognized that all individuals 
with coronary arterial disease have microvascular 
dysfunction.  

In one study of over 51,000 people who underwent 
coronary stent placement for occlusive coronary 
plaques, recurrent angina developed in 28% by 12 
months and 40% by 36 months. Total healthcare 
costs in these subjects were almost 2-fold higher 
in the first year alone [137-142]. Recurrent 
symptoms were attributed to microvascular 
dysfunction. Evidence has continued to accumulate 
in subsequent decades. By not addressing the 
primary functional disturbance in a timely manner, 
medical scientists have played a facilitating role in 
the expanding epidemic of HF. 

Coronary microvascular dysfunction is not limited 
to the heart but, instead, is a body-wide process. 
As Galen claimed, the heart and vascular system 
functions as one. Multiple organs, including brain 
and kidneys, are affected [143-147]. Many with 
coronary microvascular dysfunction have abnormal 
brain perfusion and are at higher risk for neurologic 
problems like stroke. Microvascular dysfunction 
goes hand-in-hand with diabetes, hypertension, 
and the autoimmune diseases. Microvascular 
dysfunction, like the PC phenomenon, is a whole-
body process.     
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During periods of increased physical activity or 
emotionally stressful situations microvascular 
dysfunction impairs energy flow to the myocardium, 
aka ‘decreased coronary flow reserve’, producing 
scattered areas of muscle ischemia which evoke 
anginal symptoms. While coronary plaques typically 
affect particular geographic regions, microvascular 
dysfunction involves the entire heart. Consistent 
with its systemic nature, coronary flow reserve can 
be estimated by measuring waveforms in other 
vascular territories like the retinal arteries [148].

Impaired microvascular function results in 
diminished energy generation and mitochondrial 
dysfunction in endothelial cells causing 
inflammation [149-151]. Oxidative stress 
in endothelial cells, in turn, induces NLRP3 
inflammasome formation and cytokine release 
triggering an immune response and the so-called 

cytokine storm. The response is not limited to the 
endothelium. Whether involving cardiac myocytes, 
renal tubular cells, or brain neurons, microvascular 
dysfunction sets into motion a spiral of chronic low-
grade inflammation which, in turn, is exacerbated 
by risk factors like diabetes, hypertension, obesity, 
or elevated blood lipids [152-159].

The intertwined relation between microvascular 
dysfunction and endothelial inflammation is seen 
most vividly in arterial wall calcification. Calcium 
deposition takes place in vessels affected by 
chronic endothelial inflammation leading to loss 
of elasticity with stiff, non-compliant arteries [160-
168]. Arterial wall calcification can occur anywhere 
in the body. Not surprisingly, breast arterial 
calcifications are associated with a higher risk for 
stroke and heart attack [169-171] (Figure 1).

Figure 1: Breast arterial calcifications on mammography in a 64yo hypertensive, diabetic woman.
(Courtesy of Eghosa Olomu, MD)
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Arterial calcification is associated with pathologic 
states like the metabolic syndrome, diabetes, 
autoimmune disorders, hypertensive disorders of 
pregnancy, cancers, even normal aging. In one large 
study of 30-49-year-old adults tested for coronary 
arterial calcification, over one-third (34.4%) had 
calcifications. More extensive calcification was 

associated with a 5-10-fold higher cardiovascular 
mortality [172]. Other studies found extensive 
systemic arterial calcification have a 3- to 5-fold higher 
all-cause mortality rate [173-176]. Calcifications may 
be present long before symptoms of heart disease, 
stroke, and/or signs of renal impairment appear 
(Figures 2 & 3).

Figure 2: Vascular calcifications in the thigh of a 72 y.o. male with diabetes and CKD.

Figure 3: Dense calcifications on CT in the abdominal aorta of a 78yo male with 
hypertension and severe peripheral artery disease.
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Microvascular dysfunction is a central player in 
type II diabetes [177-181]. The relationship is 
bidirectional. Diastolic impairment promotes 
insulin resistance resulting in decreased delivery 
of insulin and glucose to cells; elevated blood 
glucose and insulin levels in turn induce further 
microvascular dysfunction. And these aberrations 
are plainly related to reduced blood energy 
secondary to diminished energy generation by the 
cardiovascular system.   
 
Microvascular dysfunction and reduced energy 
flow to the kidneys induces activation of the renin-
angiotensin system, release of vasoconstrictor 
substances by the adrenal glands, and systemic 
hypertension [182-188]. This too sets into motion a 
self-amplifying, bi-directional spiral of deterioration: 
hypertension worsens microvascular dysfunction 
and exacerbates endothelial inflammation which, 
in turn, further reduces energy flow to the kidneys. 
This intertwined relationship forms the basis of the 
so-called cardiorenal syndrome which isn't really a 
distinct syndrome but simply the recognition by 
medical scientists of a relationship between the 
two organs based on interdependency of energy 
flow.

Hypertension is the most common pathway leading 
into the deteriorating spiral of HF. Hypertension 
increases cardiac ‘workload’, i.e. the resistance 
against which cardiac muscle cells must function 
and induces adaptive remodeling of the heart 
and left ventricular hypertrophy (LVH) [189-193]. 
Microvascular dysfunction and inflammation 
promote deposition of fibrous tissue in cardiac 
muscle cells leading to progressive activity-related 
fatigue and, eventually, physical incapacitation. 
The stepwise transition from early hypertension 
to LVH to HF is governed entirely by microvascular 
dysfunction and reduced energy generation.

Microvascular dysfunction is an invariant feature 
in the spectrum of CKD and causally mediates its 

spiral of deterioration [194-195]. As in the heart 
impaired diastolic function triggers inflammation 
and immune activation. LVH compounds the 
pathologic process by adversely impacting 
renal blood flow, glomerular filtration and renal 
energy extraction. Abnormal waveforms, i.e., 
microvascular dysfunction, in the retinal arteries 
are predictive of progression to CKD [196].

The full implication of the intertwined cardiorenal 
dynamics come to bear in one grim fact: as CKD 
progresses one observes acceleration on a stage 
by stage basis of cardiovascular morbidity and 
mortality. Most people with CKD die of heart disease 
[197-206]. Likewise, treatments over the past 
half-century aimed at correction of hypertension 
resulted in blood pressure reductions and lower 
rates of heart attack, stroke and intracranial 
hemorrhage but had little impact on microvascular 
dysfunction or its progression to HF and/or CKD. 
Once again, medical scientists must shoulder a 
lion's share of responsibility for the expanding 
epidemic of HF and CKD.  

A central theme in the genesis and evolution 
of HF and CKD is deterioration of the blood, the 
commonly shared milieu upon which all bodily 
functions depend. Not only does blood carry 
nutrients and growth factors that enable proper 
organ function, but its fluids – i.e. water – serve 
as a carrier for the organized energy field which 
orchestrates all cellular functions in the body. 
There has been little written in the modern medical 
literature about blood's primary causal role and 
yet for 1500 years it formed the basis for Roman 
physician Galen's system of humoral medicine 
[207]. His functionally-based system of medical 
thought and practice was arbitrarily discarded by 
chemically oriented scientists in the 18th century 
without ever refuting its claims.  

The dynamic state of blood strongly influences 
the development and progression of HF and 
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CKD. Blood accounts for about 7-8% of total 
body weight in the average adult with the RBC 
mass estimated to be about 2.3kg (5lb). RBCs 
are highly metabolically active and, through 
their iron-containing hemoglobin, generate large 
electromagnetic currents that course through the 
blood and ECF space. As we saw RBCs mediate the 
PC phenomenon.

Many studies substantiate the deleterious 
effect of anemia in chronic disease. Anemia 
is a frequent accompaniment of HF, CKD and 
chronic conditions like diabetes [208-223]. The 
relationship is bidirectional: the severity of anemia 
is often related to the stage and/or duration of the 
underlying disease; conversely, the presence of 
anemia directly impacts disease progression. Like 
hypertension and diabetes, anemia is associated 
with diastolic and microvascular dysfunction 
as well as diminished blood energy generation 
[224-228]. Anemia of any cause is independently 
associated with increased cardiovascular events 
like myocardial infarct, HF, and all-cause mortality. 
The critical element seems to be hemoglobin.

In diabetes hemoglobin (Hgb) undergoes 
irreversible glycation to form HgbA1C which has a 
markedly reduced (or absent) energy generating 
potential. HgbA1C is a reliable indicator for blood 
glucose control in diabetics and a powerful predictor 
for progression of diabetes and/or cardiovascular 
complications: higher blood glucose levels are 
associated with higher HgbA1C levels which, in 
turn, are directly related to worse outcomes. 
Chronic hyperglycemia is directly implicated with 
worsening of microvascular dysfunction [229-235].  

Studies assessing mortality risk and HgbA1C levels 
found a continuous linear relationship between 
HgbA1C levels and all-cause mortality in diabetic 
and non-diabetic populations. Lowest mortality 
rates are seen with levels less than 5% and, with 
each 1% increment, the relative risk increases 

independent of all other risk factors. HgbA1C levels 
are momentary snapshots of blood energy status 
and the ability of RBCs to generate and maintain 
the body-wide energy field.  

The intertwined nature of RBCs, Hgb and blood 
energy dynamics come full circle in the PC 
phenomenon: as diabetes, HF, and CKD progress, 
the PC response becomes blunted and, in 
advanced cases, disappears altogether [236-239]. 
This affirms the key role of RBCs in the generation 
and maintenance of blood energy levels. It also 
represents a major therapeutic challenge for any 
attempts intending to halt progression or to reverse 
the course of these debilitating and progressive 
conditions.

HEART FAILURE DYNAMICS

The failed systolic pump model of heart function 
advanced by William Harvey and Ernest Starling 
formed the basis for all notions of HF in the latter 
half of the 20th century not to mention serving 
as a flawed rationale behind a handful of largely 
ineffective therapies. Proper diagnosis and 
treatment of HF depends on accurate knowledge 
of the pathophysiology which must include energy 
dynamics.

Studies in the 1960s found that HF was characterized 
by elevated pressures in the left ventricular (LV) 
chamber coupled with reduced LV stroke volume, 
i.e., the amount of blood ejected with each 
contraction. Based on such evidence researchers 
devised an equation to estimate the efficiency of 
LV contraction— essentially a simple ratio between 
left ventricular stroke volume and the volume of 
blood in the ventricle at the end of the diastolic 
filling phase. A low left ventricular ejection fraction 
(LVEF) is suggestive of HF.

Clinical studies supported the predictive value of 
LVEF in the diagnosis of HF and, moreover, found 
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that lower values were associated with worse 
clinical outcomes. Over the years LVEF became 
uncritically accepted as a universal criterion for 
assessment of LV pump function. International 
guidelines arbitrarily designated an EF of 45% or 
less as the cutoff for heart failure. For decades LVEF 
has been the primary means by which clinicians 
assess LV and heart function and make clinical 
determinations. But LVEF only gives an illusion of 
objectivity and certainty [240-242].  

LVEF measurements are situation dependent 
and only moderately reproducible. They readily 
fluctuate with changes in blood pressure and heart 
rate. In that LVEF is based on blood volume, it is 
insensitive to primary functional indicators like 
muscle contractility and pressure. In the real-world 
ventricular contraction is diminished by elevated 
pressures in the ventricular chamber before systole, 
aka ‘preload’, which, in turn, are directly impacted 
by diastolic dysfunction; ventricular contractility 
is also impeded by the arterial pressures against 
which it must pump, aka ‘afterload’, which are 
increased in hypertension. The measurement 
of LVEF is also affected by the chosen imaging 
method which can result in variances of up to 10-
20% [243, 244]. And for any given LVEF value the 
risk for poor outcomes is increased by coexisting 
conditions like diabetes, hypertension, anemia and 
kidney function.

The most serious blow, however, came in recent 
decades with the recognition that a large percentage 
of HF patients do not have reduced LVEF. Called 
heart failure with preserved ejection fraction 
(HFpEF), its incidence has spiked dramatically in 
recent decades and now accounts for more than 
50% of chronic HF. HFpEF is more likely to affect 
women, the elderly, and people with comorbid 
conditions like diabetes and obesity. As with other 
forms of HF, treatment is largely ineffective [245-
248].

Like Cardiac Syndrome X there are often no 
obstructing plaques in the coronary arteries and 
progressive deterioration is driven primarily by 
diminished flow reserve, i.e., impaired energy 
generation in the blood [249, 250]. This, in turn, 
manifests in microvascular dysfunction and 
inflammation throughout the circulatory system. 
Once mitochondrial function in cardiac myocytes is 
affected the pathological cascade associated with 
HF – muscle hypertrophy, remodeling of the heart 
wall, fibrosis and more – is set into motion. All 
observed pathology is downstream to the primary 
energy deficit. Experimental science has spent the 
last century studying wine in order to understand 
the grape.

Just as the discovery of active ventricular dilation 
in the 1980s overturned the reigning systolic 
pump model and forever changed notions of heart 
function, the recognition of HFpEF upends the 
existing model of HF and demands an entirely new 
conceptual framework. Systolic function and LVEF 
are only isolated aspects of the HF spectrum. As 
a clinical syndrome HF is a final common pathway 
into which multiple distinct functional disturbances 
ultimately merge and blend. 

Given the volume of high-quality evidence that 
has surfaced in recent decades it is astonishing 
that medical scientists have yet to formulate 
a coherent explanation for HF — yet another 
example of paradigm-induced blindness. They 
describe three main entry points into HF: 
hypertension with activation of the adrenal axis 
and LVH, i.e., hypertrophic cardiomyopathy; 
those in which microvascular dysfunction 
and metabolic disturbances dominate, i.e., 
restrictive cardiomyopathy; and those in which 
primary inflammation of the heart as seen with 
viral myocarditis are responsible, i.e., dilated 
cardiomyopathy. In reality the three overlap and 
interpenetrate; there are few pure forms.
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While acknowledging the role of microvascular 
dysfunction and inflammation in all these precursor 
pathways scientists persist in their attempts to 
explain the various forms of HF on the basis of 
cellular and genetic mechanisms in much the 
same way Ptolemaic astronomers continued for 
centuries to use the geocentric model to explain 
planetary motions. Consciousness always wakes 
up late.
      
To observe the striking differences in cardiac 
morphology related to remodeling in the various 
forms of HF leaves little doubt that dynamic 
mechanisms are at play. The different patterns 
of remodeling can only be explained by opposing 
mechanical forces arising from within the blood 
and heart wall. The magnetic field in the blood is 
responsible for the outward motion of the heart 
and arteries while sympathetic constrictor nerves 
induce the opposing contractionary force. The 

disposition of such forces is influenced by real-
time interactions between the heart, kidneys, and 
blood. In Galen's humoral system of medicine not 
only was blood the source of all energy flow in the 
body but each organ possessed its own special 
‘power’. Clearly the term power can be taken in a 
literal sense.

In hypertrophic cardiomyopathy as blood energy 
content diminishes the kidneys, through the 
renin-angiotensin system, activate the adrenal 
axis increasing heart rate and force of contraction 
thereby augmenting energy generation. While 
this boosts energy flux in the short term, over a 
protracted period it sets the stage for chronic 
hypertension and subsequent LVH [251-253]. This 
early phase of hypertrophic cardiomyopathy can 
often be seen in young and middle-aged adults 
with hypertension who present with isolated LVH 
in the absence of cardiomegaly (Figures 4 & 5).

Figure 4: Normal appearing heart on coronal and axial contrasted CT images in a young adult.
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Figure 5: Coronal and axial contrasted CT images showing mild LVH without 
cardiomegaly in a hypertensive young adult.

As the energy deficit deepens cardiac remodeling 
markedly alters systolic and diastolic mechanics. 
Ventricular wall thickness continues to increase 
with the wall becoming stiff, noncompliant and 
fibrotic [254, 255]. Progressive diastolic dysfunction 
results in elevated end-diastolic pressures which 
'back-up' into the left atrium, pulmonary arteries, 

and right ventricle (RV) causing their dilation and 
inducing cardiomegaly. Eventually wall thickening 
in the RV may occur but never to the extent seen in 
the LV. Individuals may develop pulmonary arterial 
hypertension as well [256]. After several decades of 
progressive deterioration full blown hypertrophic 
cardiomyopathy and HF ensue (Figure 6).

Figure 6: Coronal and axial contrasted CT images of cardiomegaly with moderate (top two images) 
and severe (bottom two images) LVH and hypertrophic cardiomyopathy.
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The blood-borne metabolic pathway into HF, i.e., 
restrictive cardiomyopathy, evolves differently. 
Subjects are usually middle-aged or older adults 
with a history of obesity and/or diabetes who 
develop recurring episodes of angina-type 
chest pain (with or without coronary plaques) 
and progressive inability to perform normal 
daily activities [257-260]. Rhythm disturbances, 
especially atrial fibrillation (AF), may occur [261, 
262]. In one study, among people with new onset 
AF, 37% had coexisting HF; in people with known 
HF up to 60% developed AF. This same population 
is also more likely to present with primary 
pulmonary arterial hypertension and/or signs of 
right-sided HF like edema in the lower extremities.

As opposed to early hypertrophic HF, the energy 
deficit in restrictive cardiomyopathy is global, 
affecting all regions of the heart and both systole 
and diastole. But the primary driver is diastolic 
dysfunction. During periods of increased activity 
there is rapid buildup of pressure in the cardiac 
chambers impeding blood flow, hence the term 
'restrictive,' that persist long after cessation of 
activity and may even precipitate congestive failure 
[263]. In this pattern of remodeling the heart is 
more likely to develop concentric enlargement 
all four chambers and take on a more globular 
appearance (Figure 7).

The third entry path into the HF syndrome, dilated 
cardiomyopathy, is related to chronic myocardial 
inflammation [264-266]. The most common cause 
appears to be viral myocarditis. Affecting any 
age group, it is being seen in young and middle-
aged adults with increasing frequency. It presents 
frequently as deteriorating cardiac function in the 
absence of abnormal intraventricular pressures or 
coronary artery disease. Because myocardium is the 
primary target there is enhanced arrhythmogenic 
potential and risk for sudden death [267].

Chronic myocardial inflammation resembles 
an autoimmune disorder with activation of 
pro-inflammatory cytokine pathways and 
autoantibodies directed against cardiac muscle 
[268-271]. In dilated cardiomyopathy progressive 
destruction of heart muscle occurs with loss 
of contractility leading to primary systolic HF. 
The most common imaging finding is a diffusely 
enlarged thin-walled heart with disproportionate 
dilation of the chambers (Figure 8).

Figure 7: Coronal and axial contrasted CT images of 67yo male with diabetes and HFpEF.

https://www.doi.org/10.46766/thegms.medphys.23041001


Energy Dynamics in Chronic Heart Failure, Chronic Kidney Disease & the Cardiorenal Syndrome: A New Causal Paradigm

304

Thorp KE, Thorp JA, Northrup C, Thorp EM, Ajovi SE, Kepros JP. Energy Dynamics in Chronic Heart Failure, Chronic Kidney Disease & the Cardiorenal 
Syndrome: A New Causal Paradigm. G Med Sci. 2023; 4(1):290-347. https://www.doi.org/10.46766/thegms.medphys.23041001

Figure 8: Contrasted coronal and axial images in a 50yo male with dilated 
cardiomyopathy. Etiology unknown.

The energy dynamics responsible for the 
globular 'water pouch' morphology in dilated 
cardiomyopathy reveal yet another example of 
flawed reasoning based on the obsolete systolic 
pump model. Once negative intraventricular 
pressures in early diastole were discovered 
researchers claimed they resulted from 'elastic 
recoil' of the fibrous cardiac skeleton induced 
by the torsional rotation of the myocardium 
during systole. This is utterly ridiculous. How 
does this explain the marked cardiomegaly and 
disproportionate dilation of the chambers when 
there is insufficient muscle to generate such a 
torsional force? The outward expansion of the 
heart and arteries originates in the blood.

CHRONIC KIDNEY DISEASE

Progressive renal failure sets into motion an 
ever-widening nest of morbid consequences –
hypertension, anemia, electrolyte imbalances, 
metabolic acidosis, and mineral bone disease (MBD) 
not to mention at least a 20-fold higher incidence 
of adverse cardiovascular events compared with 
the general population. Given the broad impact of 
such conditions on healthcare systems across the 
globe the astronomical costs attendant with CKD 
are not at all surprising [272].

In 1812 a paper appeared in the journal Medical-
Chirurgical Transactions by a Dr. Wells who related 
his experiences with various forms of 'dropsy,' 
i.e., edema, which is due to accumulation of fluid 
in the ECF space beneath the skin [273]. By then 
chemists had developed methods to analyze urine 
for the presence of proteins like albumen. Among 
29 patients with 'dropsy of the skin,' i.e., edema in 
the lower extremities, 23 had protein in their urine. 
Proteinuria is now regarded as a primary sign of 
acute renal injury and chronic kidney disease.

Wells further observed that dropsy was often 
associated with chest symptoms like cough and 
difficulty in breathing. A number of individuals 
had 'hydrothorax,' i.e., fluid in the pleural space, 
suggesting chronic HF. Two-thirds of such cases 
had protein in their urine. Wells concluded that 
this clinical constellation constituted a distinct 
pathologic syndrome.  

In 1827  English physician Richard Bright described 
25 cases of dropsy, many of whom had proteinuria 
and which, on subsequent postmortem 
examination, were found to have marked pathologic 
changes in the kidneys [274]. Thereafter the triad 
of dropsy, proteinuria, and kidney dysfunction 
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became known as Bright’s disease. Bright later 
described an association between proteinuria 
and LVH. Decades later investigators found that 
elevated blood pressure often occurred before 
the onset of proteinuria and seemed to play a 
mediating role. The functional basis for these 
intertwined pathologies would remain obscure for 
nearly 150 years.
 
Based on the systolic model of heart function, renal 
impairment was thought to be a consequence 
of diminished arterial inflow to the kidneys. The 
20th century concept of renal failure held that 
the kidneys interpreted diminished renal arterial 
inflow as indicating fluid depletion. To correct this 
the kidneys responded in two ways: they increased 
retention of sodium and water by the collecting 
tubules (which led to volume overload and edema), 
and they activated the renin-angiotensin system in 
order to raise cardiac output and increase renal 
blood flow (which led to hypertension). But this 
explanation never held water.

A 2008 study examining circulatory dynamics 
associated with worsening renal function in 
HF patients found that the arterial flow model 
failed to explain the deterioration. The strongest 
determinant was elevated right atrial pressure, i.e., 
diastolic dysfunction [275]. A study in 2009 study 
also found that increased venous pressure was 
the most important factor leading to worsening of 
renal function [276].

Elevated central venous pressure (CVP), i.e, 
backward failure, is now recognized to be the 
primary driver of deteriorating renal function. 
Transmission of elevated CVP into the kidneys raises 
intrarenal pressure which secondarily restricts 
arterial inflow. The kidneys aren't reabsorbing more 
sodium and water. Instead, due to increased back-
pressure, the normal pressure gradient between 
arteries and veins is diminished so that less urine 
and sodium can be filtered. This same mechanism 

explains proteinuria. Impaired RV diastolic function 
also causes accumulation of fluid in the ECF space 
of the lower extremities causing edema. For over 
200 years dropsy could not be explained on the 
basis of the Harvey-Starling systolic model. Now 
the answer is obvious. Why didn't scientists ever 
put 2+2 together?

The relation between increased renal vein pressure 
and decreased kidney function was recognized 
well over a century ago but never incorporated 
into the conceptual framework. In 1861 German 
physiologist Ludwig observed in lab animals that as 
renal vein pressures increased urine flow decreased. 
In 1931 Winton described a 'steeply graded' linear 
relation between renal venous pressure and urine 
flow [277]. Arterial inflow was less significant than 
elevated venous pressure. In the 1980s studies 
found that transient compression of the renal 
veins decreased the filtration rate of urine along 
with sodium excretion [278-280]. Such dynamics 
are in play with antihypertensive therapies.  
 
In the 1990s studies found that antihypertensive 
treatments with angiotensin converting enzyme 
(ACE) inhibitors designed to block activation of the 
renin-angiotensin system delayed progression of 
CKD and reduced proteinuria, in some cases by up 
to 40-80%. Studies found increased endothelial-
dependent dilation, i.e., diastolic function, which 
in turn reduced venous back-pressure [281-290]. 
Not only was the systolic framework incapable 
of explaining such findings it actually prevented 
researchers from interpreting results correctly. 
And yet current methods used to evaluate renal 
function don't even consider diastolic function.  

To gauge severity of CKD a quantitative method 
known as glomerular filtration rate (GFR) is used, 
a ratio between the concentration of creatinine in 
the urine versus in the blood adjusted for 24-hour 
urine volume. For decades GFR has been regarded 
as a benchmark for estimation of renal function 
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but, like LVEF, it involves some shaky assumptions 
and statistical hocus-pocus.  

Creatinine, a breakdown product of muscle 
metabolism, is freely filtered by the glomeruli and 
excreted into the urine. But renal tubules also 
secrete it into the urine so it doesn't just reflect 
glomerular filtration. Creatinine levels in the blood 
fluctuate according to physical activity, age, dietary 
protein intake and hydration status. Individuals 
can have significant elevations in blood creatinine 
without impaired renal function and, conversely, 
relatively normal blood creatinine levels in the 
presence of impaired renal function.  

In recent decades a statistically derived method 
has been widely used called estimated GFR (eGFR) 
that takes into account factors like age, gender, 
and body mass. A 2019 report analyzed 70 studies 

comparing eGFR with measured GFR in 40,000 
renal transplant patients and showed that eGFR 
often varied by 30% or more and incorrectly staged 
60% of CKD patients [291, 292]. The eGFR method 
is but an estimate of an estimate.  And it assumes 
that glomerular filtration is the only function that 
matters.

No doubt a primary function of the kidneys is to 
filter fluids, ions, solutes and impurities from 
the blood. But is there more to renal function 
than meets the eye? And how do blood energy 
dynamics fit into the picture? By necessity kidney 
function must entail not only elimination of wastes 
and superfluous materials but extraction of energy 
from the filtered arterial fluids so as to preserve 
blood energy content, otherwise large amounts of 
energy would be lost down the toilet.

Figure 9: Small venous tributaries lie in close proximity to the collecting tubules.  
Reabsorption of glomerular filtrate back into the vascular system is effected by suction 

pressure generated by the right ventricle during diastole.
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Observe in Figure 9 that energy-laden arterial 
blood, once filtered by the glomerulus, passes 
through the renal collecting tubules. The tubules 
lie in close proximity to tiny venules and it is the 
suctional force of the RV that draws energy currents 
and fluid back into the venous system. Moreover, 
the energy content of the filtered fluid itself creates 
the directional flow gradient along which the fluid 
and ions move back into the venous system, in the 
manner that electrical currents always travel along 
voltage gradients.  

The defining attribute of healthy kidney function 
is not glomerular filtration but the ability to 
concentrate urine [293-296]. As they remove 
wastes and spent materials from the tubular 
filtrate, the kidneys extract an ultra-pure fluid with 
high energy content which returns to the vascular 
system via the renal veins. This enriched fluid – 
which definitionally is ECF – enables venous blood 
to efficiently bind oxygen during passage through 
the lungs and to undergo energetic transformation 
in the heart. As the kidneys fail, the quality 
of the blood deteriorates. For this reason, we 
regard the kidneys as guardians of the ECF space. 
Deterioration in ECF energy content plays into the 
amplifying spiral of CKD (Figures 10 & 11).

Figure 10: Contrasted coronal and axial CT images of normal appearing kidneys in a young adult.
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Figure 11: Coronal and axial contrasted CT images in moderate CKD (top two 
images) and end-stage renal disease (bottom two images). Note loss of volume 

associated with progressive cell death & fibrosis.

The kidneys are highly metabolically active and 
receive about 25% of blood flow from the heart. 
The concentration of mitochondria in renal cells 
is second only to cardiomyocytes. Mitochondria 
synthesize energy substances like ATP and NADPH 
which drive cellular activity [297-301]. During 
periods of oxidative stress when mitochondrial 
function is disrupted, reactive oxygen species 
are produced which damage cellular structures 
and trigger inflammation. This, in turn, elicits an 
immune response via NLRP3 inflammasome and 
cytokine pathways that, ultimately, results in cell 
death [302, 303].

Chronic low-grade inflammation with impaired 
mitochondrial function is the hallmark of CKD.  
In healthy kidneys, fibroblasts are responsible 
for maintenance of renal architecture. During 
prolonged ischemic injury fibroblasts are activated 
and functional tissue is gradually replaced by 
connective tissue. Progression of CKD forms a 
nearly invariant common pathway that builds 
in step-by-step fashion: diastolic dysfunction → 
impaired renal tubular function → proteinuria → 
cytokine-mediated inflammation → progressive 
cell death and loss of function → activation of 
fibroblasts → renal fibrosis and scarring. Due to its 
silent nature CKD is not usually diagnosed until in 
advanced stages [304-307].
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VITAMIN D AND THE ECF SPACE

By the early 20th century it was known that 
sunlight, ultraviolet light and cod liver oil were 
effective in preventing and reversing rickets, a 
metabolic bone disease, the incidence of which had 
skyrocketed in industrialized urban areas within 
upper northern latitudes [308-310]. In the 1920s 
researchers discovered that the active principle 
in cod liver oil was vitamin D which, through 
unknown mechanisms, effected transformation of 
ambient light energy resulting in the amelioration 
and reversal of the bone and mineral pathology 
of rickets. We describe the means by which such 
energy transfers occur in an earlier piece [311].

In the 1980s reports began to surface documenting 
deficient vitamin D levels in various infectious and 
autoimmune disease like tuberculosis, multiple 
sclerosis, diabetes, inflammatory bowel disease 
rheumatoid arthritis, psoriasis and more [312-
339]. In that chronic inflammation is indicative of 
deficient energy flux we can assume that vitamin D 
mediates energy transfers in the body.

In the general population low vitamin D levels 
are associated with increased all-cause and 
cardiovascular mortality [340-352]. Vitamin D 
deficiency in healthy populations is associated 
with increased arterial stiffness, microvascular 
dysfunction and inflammation [353-356]. 
Conversely, vitamin D supplementation leads to 
improvement in vascular dilation and reduction 
in LVH as well as inflammation [357-359]. Quite 
clearly vitamin D plays an active role in the body's 
energy economy.
 
Vitamin D deficiency is common among people with 
CKD and is associated with progression of disease 
and adverse cardiovascular outcomes. Low vitamin 
D levels trigger activation of the renin-angiotensin 
system and are associated with hypertension, 
impaired diastolic function and inflammation [360-

362]. Vitamin D deficiency disrupts the endocrine 
axis between the kidneys, parathyroid glands 
and bone compartment setting into motion the 
syndrome known as CKD-MBD (mineral and bone 
disorder), a plethora of abnormalities driven by 
hormones like PTH and FGF-23 whose effects 
escalate the deterioration [363-367].  

In 1969 researchers discovered the vitamin D 
receptor which mediates the effects of vitamin 
D at the cellular level. Over the ensuing decades 
vitamin D receptors were found in over 30 tissues 
throughout the body including kidneys, skin, bone, 
intestines, pancreatic β-cells, prostate, breast, 
muscle, adipose tissue, as well as the immune 
system. Activated vitamin D influences at least 
500 different gene activities through receptor-
mediated epigenetic mechanisms [368].

Given such widespread biological impact one 
would expect vitamin D to be a panacea for every 
conceivable form of inflammation but such is 
not the case. For every study showing benefits 
with vitamin D supplementation another finds 
no effect [369]. Some studies find that vitamin D 
administration in CKD improves clinical outcomes in 
MBD and reduces proteinuria; others find it has no 
effect on either CKD progression or cardiovascular 
outcomes [370-374]. Why are results so mixed? It 
would appear that the rate-limiting step lies not 
in synthesis of vitamin D but its conversion into a 
biologically potent state.   

Through photosynthesis-like mechanisms, radiant 
energy in the skin induces vitamin D formation 
which, subsequently, is transformed to its 
intermediary 25(OH)D

3 and, finally, to the highly-
active 1,25(OH)2D3 form, which is said to be 500-fold 
more biologically active. These latter two energy-
requiring steps are effected by the ubiquitous 
superfamily of enzymes known as the cytochrome 
p450 system. Studies suggest their activity is 
dependent on water-borne energy currents and/
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or external radiant energy [375-378]. And herein 
lies the basis of the vitamin D-associated bone 
pathology in CKD.

All physiological functions in the body, including 
outward dilation of the heart and arteries, are 
effected through conformational changes of 
proteins which, as with the heart, represent 
states of polarization and depolarization. To be 
biologically active proteins must acquire a so-
called hydration shell, consisting of multiple 
layers of water molecules, which is instrumental 
in determining not only 3D protein structure 
but the folding process itself [379-384]. Energy 
disposition in the ECF not only plays a primary 
role in conformational changes in normally folded 
proteins but in pathological states like the protein 
misfolding disorders [385-389].

The hydration shell surrounds hydrophilic domains 
of most intracellular proteins and organizes into 
a complex semi-crystalline matrix with gel-like 
consistency. Hydration shell water has physical 
properties distinct from that of water in the 
adjacent fluid spaces including net negative charge, 
higher pH, and increased density. Such physical 
differences implicate a voltage gradient and energy 
flow. When the ECF is energy-depleted, function 
of enzymes like the cytochrome p450 system 
is disrupted thereby impeding energy transfers 
and, in the case of vitamin D, formation of highly-
active 1,25(OH)

2D3. As the function of the kidneys 
deteriorates so too does the energy content of the 
ECF. 

The trail of escalating bone pathology begins in 
the kidneys [390-392]. Normally blood calcium and 
phosphate are tightly regulated and fluctuations 
are offset by altered absorption in the gut and/or 
excretion by the kidneys. With progressive death 
of renal cells and deterioration in ECF energy status 
two things happen: insufficient conversion of 
vitamin D into active 1,25(OH)

2D3 to meet energy 

needs, and, impairment of tubular reabsorption 
and/or secretion of calcium and phosphate. This 
leads to increased phosphate in the blood and loss 
of calcium in the urine [393, 394]. Parallel to this 
progressive leeching of minerals from the bone, 
i.e., osteoporosis, takes place with heightened 
fracture risk [395].

In response to altered renal function bone cells 
release a substance called fibroblastic growth 
factor-23 (FGF-23) which worsens the situation 
[396-400]. While increasing urinary phosphate 
excretion, FGF-23 blocks synthesis of vitamin D, 
impairs microvascular dysfunction, accelerates 
arterial calcification, promotes LVH, and activates 
fibroblasts leading to progression of CKD and 
fibrosis. The parathyroid glands join in the fray 
by increasing secretion of the hormone PTH 
to augment vitamin D synthesis and normalize 
bone metabolism which, once again, amplifies 
the spiral of deterioration [401-403]. A blow-by-
blow description of events is pure overkill. All 
downstream pathology follows on the heels of 
microvascular dysfunction and impaired energy 
generation which, in turn, lead to worsening renal 
function, attenuation of energy flow into the ECF 
space, and acceleration of bone pathology.

OMNIA INCIPIT IN SANGUINE

In this final section we return to where we began 
– the organized blood-borne energy field – and 
consider the implications of this profoundly 
transforming rediscovery.  

If, as Galen claimed, everything begins in the 
blood, and if, as we now see, both HF and CKD 
are manifestations of a progressively expanding 
energy deficit, then, as a self-evident principle, 
all therapeutic attempts must be oriented toward 
replenishment and restoration of the debilitated 
energy economy. Therapies must address dynamic 
causes, which is to say microvascular and diastolic 
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dysfunction, otherwise there will be no stabilization 
or reversal of HF and CKD. We catch a glimpse of 
this principle at play in current therapeutics.

In 2014 a new class of hypoglycemic agents, the 
sodium-glucose transport (SGLT2) inhibitors, 
was introduced for the treatment of diabetes. 
Under normal circumstances all filtered glucose 
is reabsorbed into the blood by the renal tubules 
with no spillage into the urine. A class of receptors 
in the proximal renal tubule known as the SGLT2s 
reabsorbs about 80% of the glucose. SGLT2 
inhibitors block function of these receptors leading 
to increased loss of glucose in the urine and 
resultant lowering of blood sugar levels [404-406].

Clinical studies affirmed improved glycemic 
control but it soon became apparent their actions 
extended far beyond lowering blood sugar. 
SGLT2 inhibitors induced weight loss, lowered 
hypertension, reduced cardiac arrhythmias, 
decreased proteinuria, delayed CKD progression, 
and improved outcomes in HF [407-414]. Effects 
were mediated by increased microvascular and 
mitochondrial function [415-423]. SGLT2 inhibitors 
are also associated with significant reductions 
in Hgb A1C [424, 425]. Improved microvascular 
function must be related to increased energy 
generation by RBCs related to decreased blood 
glucose levels [426, 427].

For obvious reasons SGLT2 inhibitors are not a final 
solution but the accidental discovery of beneficial 
effects points in a potentially fertile direction: 
therapeutic strategies should be aimed at 
enhancing RBC function and restoration of the PC 
response. Gradual optimization of PC should, over 
time, augment energy dynamics in the blood, ECF 
space and intracellular milieu. This would seem to 
be the best (and possibly only) option for potential 
reversal of these conditions. On the other hand, 
failure to address energy dynamics will result in 
predictable consequences as our final example 
illustrates.

Anemia is a very common complication of CKD 
and HF. Overall about 25% of those with CKD 
develop anemia and by the time end-stage disease 
supervenes at least 75% are affected [428-430]. 
The prevalence of anemia in HF ranges from about 
10% to 70% which is also stage-dependent [431]. 
In both cases anemia is associated with diminished 
quality of life, progression of disease, increased 
hospitalization rates, and higher mortality.

Treatment of anemia remains controversial and 
far from ideal. Over the past three decades, 
iron supplementation, blood transfusions, and 
erythropoiesis-stimulating agents (ESAs) like EPO 
have been the mainstay but each has a downside. 
Oral and intravenous iron are associated with 
gastrointestinal side effects and infusion reactions. 
Excess iron induces free radical damage in cells and 
increases the risk of infection. Blood transfusions 
are associated with autoimmune reactions and 
autoantibody formation [432-434].

Since their release in 1989 ESAs have been regarded 
as the standard of care despite a black box warning 
alerting users to an increased risk for death, heart 
attack, stroke, blood clots, increased risk of tumor 
progression and shortened overall survival. And 
raising Hgb too much also worsens outcomes. 
Recent studies found increased risk of death and 
adverse outcomes with ESAs when attempts were 
made to raise Hgb into normal range [435-438]. This 
is undoubtedly related to diminished blood energy 
generation; attempts to stimulate RBC synthesis 
pull energy away from other vital functions; they 
rob from Peter to pay Paul. 

Based on such pitfalls the search for a more suitable 
means to address the anemia problem continued 
eventually leading back to the PC phenomenon. 
In the early 1990s scientists identified a substance 
they called 'hypoxia inducible factor' (HIF) which 
is released during the early ischemic phase of the 
PC response and which appears to play a key role 
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in mediating its effects. HIF induces a plethora of 
genes including those involved in production of 
RBCs, EPO and iron-transport proteins. Its potential 
to coordinate RBC synthesis and iron metabolism 
led many to regard HIF as an ideal successor to 
the ESAs for addressing the anemia dilemma [439-
446].   

But HIF is rapidly degraded by an enzyme, prolyl 
hydroxylase, and its effects are short-lived. To 
overcome this snag scientists developed a group 
of compounds known as the prolyl hydroxylase 
inhibitors (HIF-PHIs) that block its degradation 
and prolong its activity. In recent years dozens of 
clinical trials have evaluated the effect of these 
agents on anemia outcomes in CKD and, finally, 
in 2019 they were approved for use in various 
European and Asian countries although not in the 
US.  Unfortunately, the HIF-PHIs performed little 
better than ESAs.
 
The effect of HIF-PHIs on RBC production was 
similar to that of the ESAs or, in research jargon, 
‘non-inferior’. And while they might improve iron 
metabolism, supplementation is still necessary. 
And then there is the thorny problem of side effects. 
In a pooled analysis of four major clinical trials, 
one of the agents, roxadustat, had a 6-fold higher 
incidence of venous thrombosis, 4.8-fold increase 
in pulmonary embolism, a 5.4-fold increase in 
seizures and a 2.4-fold increase in septic shock 
compared with placebo. It was also associated 
with higher adverse cardiac events and all-cause 
mortality [447-449]. Other reported side effects 
of the HIF-PHIs include gastrointestinal erosions, 
progression of renal fibrosis, hyperkalemia, 
activation/reactivation of cancers, progression 
of diabetic retinopathy and pulmonary arterial 
hypertension [450]. Doesn't the safety profile look 
just a bit worrisome? 

The question raised by such results has less to 
do with the relative efficacies of HIF-PHIs versus 

ESAs but, instead, why do each of them have 
such marginal effects on anemia correction and 
improvement in outcomes? The answer can only 
be found in the deterioration of the blood-borne 
energy field. Both agents obviously activate 
specific energy-requiring functions in targeted cells 
but if energy status is marginal then results will be 
less than desirable. The profusion of side effects, 
especially those involving the vascular system such 
as clot formation, indicate energy is being actively 
drawn out of the blood for other functions. The 
inescapable conclusion is that any attempt to 
modify outcomes in HF and CKD, or their morbid 
consequences, must address the energy equation. 

EPILOGUE

We have shown that the origins of HF and CKD, two 
of the most ubiquitous organ failure syndromes 
globally, lie not in the cellular and molecular 
domains as scientists have long claimed but, 
instead, are energetic in nature and related to 
the intertwined impairment of heart and kidney 
function culminating in progressive deterioration 
of the blood-borne energy field.  

The inability of the cellular/molecular paradigm to 
accurately explain such happenings constitutes a 
classic paradigm collapse as described by Thomas 
Kuhn and, concurrently, signals the rise of a new 
energy-based paradigm in medicine. By the same 
token it underscores the urgent need for new 
diagnostic and therapeutic approaches to stem 
the rising black tide of chronic disease across the 
globe. There is precious little time for foot-dragging 
and dawdling on this immensely impactful issue.    

Late 19th century psychoanalyst Pierre Janet argued 
that the sole purpose of consciousness is ‘to attend 
to the function of reality’. Its purpose is not to devise 
abstract theoretical systems that have little bearing 
on real world events but to faithfully integrate the 
evidence that reality presents to the senses. For 
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much of the 20th century medical scientists fell 
into a dogmatic slumber that precluded them from 
seeing the true nature of phenomena before their 
eyes.  

We observe first-hand the sheer determining power 
of paradigm: one ‘sees’ what one is conditioned to 
see. Scientists, by instinct and training, are herd 
creatures who follow the well-trodden path and, 
by convention, are constrained in their ability to 
explore outside established boundaries. Such 
attributes are no longer conducive to discovery 
and innovation. Paradigms become totalizing 
(as in totalitarian) ways of perceiving reality. But 
intractable problems like HF and CKD cannot be 
solved using the same mode of thought that created 
them. This is the most important take-home lesson 
from the failed 20th century experimental medicine 
experiment.  

True science is more than interminable 
experimentation and generation of data; 
it demands integration of evidence into a 
comprehensive and internally coherent framework 
that mirrors the function of reality. By the same 
token description and explanation are not one and 
the same. As a paradigm moves more deeply into 

abstract theorizing it runs the risk, like Ptolemaic 
astronomy, of creating an entirely fictional world 
of thought even when based on objective facts. 
Facts are real, how they are explained is another 
matter altogether.  

Since the mid-18th century, based on the writings 
of philosopher David Hume, it has been recognized 
that no scientific theory can ever be proven. It is 
impossible to know what lies outside one's spatial 
or temporal frame of reference. 20th century 
scientists seem to have forgotten this crucial point: 
all scientific knowledge is tenuous and provisional. 
There is no place for hubris and dogmatism in 
science.  

Based on the work of 20th century science 
philosopher Karl Popper it is established that the 
only way science advances is through refutation 
of existing hypotheses. We have met this demand 
vis à vis demonstration of the incompleteness of 
the cellular/molecular framework and it is now 
incumbent upon scientists to refute assertions 
advanced in this paper. In the event refutation is not 
forthcoming then the dynamic energy framework 
must be accepted as provisionally correct.
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