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It is said that no discovery is complete until its 
implications have been fully realized. The identification 
of a previously unrecognized phenomenon says little 
of its potential effects. What appears as a stroke of good 
luck can culminate in disaster; misfortune may harbor 
unimagined potential. Discovery is a double-edged sword 
that manifests only over time. Nowhere is this aphorism 
more applicable than in contemporary medical science.

The tried-and-true mode of discovery in 20th century 
medical therapeutics falls along this line: the beneficial 
effect of a substance is observed empirically during 
random testing or, conversely, new compounds are 
synthesized based on some existing pharmacologic 
principle; the substance undergoes testing in animals and, 
if no undesirable consequences ensue, clinical studies in 
humans are conducted. Ultimately, if the substance passes 
muster on these counts, it will be approved by some 
regulatory agency, the FDA for example, for general use in 
individuals with appropriate medical indications.

In the case of the numerous drug-induced mass tragedies 
that punctuated 20th century medicine—sulfanilamide, 
thalidomide, isoproterenol, diethystilbesterol, fenoterol, 
Fenfluramine-phentermine, cerivastatin, or rofecoxib—
the disaster can generally be attributed to insufficient 
vetting of a substance, malfeasance by the pharmaceutical 
concern, failure of proper oversight by regulatory agencies 
or any combination of the three. In such cases completion 
of the discovery process then occurs at the expense of the 
public after the substance is in general circulation.

Undoubtedly the most conspicuous exception to this 
rule of thumb is found in the strange case of ozone, a 
volatile atmospheric gas, in which every aspect of medical 
convention and discovery is turned topsy-turvy. From the 
beginning ozone was labelled as a toxic environmental 
substance, a conclusion borne out by numerous laboratory 
and epidemiologic studies. When in excess in atmospheric 
air ozone produces difficulty in breathing, cough, nasal 
congestion, tear formation, chest discomfort and, in 
susceptible individuals, predisposes to asthma attacks, 
angina pectoris and occasional heart attack. Such effects 
incriminate ozone as a hazard to human health.

Laboratory studies confirm such effects at the cellular 
and molecular level. A powerful oxidant, ozone diverts 
energy intended for cellular use resulting in impaired 
mitochondrial function, diminished ATP synthesis, 
production of reactive oxygen species and a host of toxic 
intermediary compounds. Its mechanism of action has 
been documented in so many studies in animals and 
humans over the past century as to galvanize consensus 
among those familiar with the topic. It is hardly surprising 
that regulatory agencies seek to restrict atmospheric levels 
and limit human exposure to its deleterious influences. 
But as in so many other cases things aren’t quite as simple 
as they first appear.

In the 1970s reports began to surface of paradoxical 
benefits from small ozone doses administered by various 
routes that bypass the lungs and, instead, funnel directly 
into the blood. In the 1980s physicians reported beneficial 
results with ozone in HIV patients. Later studies indicated 
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that ozone enhances immune function. The list of 
disorders that responded favourably to ozone treatment 
grew dramatically: autoimmune conditions, peripheral 
vascular disease, fibromyalgia, neurodegenerative 
diseases, renal and gastrointestinal disorders, various 
cancers, healing of wounds and more. Recent studies 
found beneficial effects in Covid-19 pneumonitis.

What is at play in this dramatic and unexpected turn 
of events? Why has there been such pushback from 
regulatory agencies like the FDA? And why has organized 
medicine been so slow to recognize the vast potential of 
ozone and implement it into its therapeutic regimen? 
Based on accrued data, this lapse too appears to be playing 
out at the expense of the public. In this paper we examine 
the science behind the ozone phenomenon. Emerging 
recognition of its vast therapeutic potential has been 
greatly amplified by two seemingly unrelated discoveries 
in the closing decades of the 20th century.

The first was the discovery of the preconditioning (PC) 
phenomenon by Murry et al in 1986 which found that one 
or more applications of ‘sublethal’ amounts of physiologic 
stressors like ischemia, hyperthermia, or toxins induce 
a powerful counter-response that confers body-wide 
protection to subsequent insults acutely and for up to 
72h afterward. The PC phenomenon is now recognized 
to be the most powerful form of endogenous protection 
ever discovered. The second linchpin discovery was the 
recognition of an organized energy field in the blood that 
originates through the contraction and dilation of the 
heart. As we will see ozone activates this energy field and 
asserts its effects via the PC phenomenon.

The Ozone Paradox

In the 1880s, German pharmacologist Hugo Schulz 
examined the effects of toxic substances on yeast 
cultures. Using a variety of compounds over a broad range 
of concentrations, and expecting to find progressive 
dose-dependent toxicity, Schulz was taken aback to 
observe that while all agents produced toxic effects at 
high doses, they paradoxically stimulated fermentation 
in yeast cultures at low concentrations [1]. Schulz found 
similar reports in the research literature.

Upon sharing his findings with homeopathic physician 
Rudolph Arndt, they deduced that such results must 
be independent of the particular chemical applied and, 
instead, represent an adaptive response on the part of 
the organism. Administered toxic substances have more 
than one effect and act in a biphasic manner: small doses 
stimulate; large doses inhibit. This axiom came to be 
known as the Arndt-Schulz Rule.

In the 1930s the Arndt-Schulz Rule came under blistering 
attack by English pharmacologists and by decade’s end 

had apparently been discredited [2, 3]. Nonetheless a 
steady stream of reports continued to surface in the 
scientific literature describing biphasic effects in plants, 
microorganisms, insects, as well as higher organisms. In 
the 1940s two investigators described the effect in fungal 
cultures and renamed it hormesis. Reports continued to 
indicate that substances possessed both stimulatory and 
inhibitory effects [4].

In recent decades the dose-response revolution has 
gathered steam in large part due to the writings of 
toxicologist Edward Calabrese. Beginning around 2000, 
he published a series of illuminating papers on hormesis, 
which document the rise, fall and eventual revival of an 
excluded perspective. He cites many scientific articles 
confirming biphasic dose effects as well as offering deep, 
informed analysis of the historical currents which have 
shaped its complicated legacy [5-10]. Such paradoxical 
biphasic effects are seen with ozone.

Rats exposed to higher doses and/or longer periods of 
ozone developed brain dysfunction manifesting in 
cognitive and motor impairment. Other reports found 
that ozone inhalation induced pathological neuronal 
alterations in the brainstem, basal ganglier and 
hippocampal regions which would seem to explain 
the various functional impairments [11-14]. It is well-
established that elevated ozone levels in inspired air are 
associated with increased incidence of ischemic stroke in 
humans [15-18].

On the other hand, an increasing number of studies 
support the beneficial role of ozone in the treatment of 
various neurological conditions. Ozone has been used for 
decades in acute and chronic neuropathic pain syndromes 
with reduction in subjective pain scores as well as 
analgesic requirements [19-28]. Sporadic reports suggest 
its potential to reduce the size of the ischemic penumbra 
in acute stroke and thus limit the severity of long-term 
functional deficits [29-32].

Recent studies point to its clinical utility in 
neuroinflammatory conditions like multiple sclerosis. In 
addition to symptomatic improvement effects include 
reduction of oxidation markers, proinflammatory 
T-cells and cytokines and increased anti-oxidant levels, 
regulatory T-cells and anti-inflammatory cytokines 
[33-38]. While ozone’s mechanism of action has been 
elucidated in great detail the means by which its benefits 
are conferred remain sketchy. And this is where the PC 
phenomenon comes into play.

Murry and colleagues executed their original PC 
experiment in an attempt to determine mechanisms 
at play in myocardial infarct. They had deduced that 
infarct must be secondary to either exhaustion of energy 
reserves or build-up of toxic metabolites. They tested 
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whether intermittently reopening the coronary arteries 
to allow for brief return of blood flow altered the course of 
cellular injury [39]. In a control group of dogs a coronary 
artery was clamped for 40 minutes to assess the extent of 
infarct damage. Another group underwent a series of four 
5-minute arterial occlusions interrupted by 5-minute 
intervals of reperfusion. Afterward the artery was clamped 
for 40 minutes. To their complete surprise, animals that 
received PC pulses had only about 25% of damage as the 
control group. How can this be?

The protection afforded by the PC phenomenon has 
been substantiated in many human and animal studies. 
When the PC sequence is applied prior to a prolonged 
ischemic episode a period of protection ensues that lasts 
about 2-3h during which ischemia-mediated damage is 
markedly reduced. Biochemical analysis suggests that PC 
supposedly slows the rate of ATP consumption, anaerobic 
glycolysis, lactate accumulation, and development of 
tissue acidosis. Surprisingly, cardiovascular functions 
like endothelial dependent vasodilation are preserved and 
the myocardium becomes resistant to potentially lethal 
arrhythmias. Researchers are at a loss to explain the 
various effects but suggest that PC pulses somehow slow 
the metabolism and diminish energy demand [40-49].

A 1993 study found that preconditioning pulses applied 
to one vascular territory of the heart protected the rest of 
the heart from prolonged arterial occlusion [50]. Several 
years later another study found reduction in myocardial 
infarct size in rabbits after administration of PC pulses 
to skeletal muscle [51]. Reports soon followed describing 
protection in organs besides the heart after PC pulses in 
distant vascular territories. Remote PC effects involving 
brain, liver, intestines, kidneys, stomach and lungs were 
described [52-65].

The PC response originates in the cardiovascular system 
and blood and spreads throughout the body. PC pulses 
applied to any vascular bed confer systemic resistance to 
prolonged ischemia. Remote PC induced by serial inflation-
deflation of a blood pressure cuff in the extremities is 
now used prior to various surgical procedures to limit 
operative and postoperative injury [66]. Reports suggest 
beneficial effects are transferable from one animal to 
another by transfusion of blood or bodily fluids [67-69]. It 
became recognized that the PC response could be induced 
by different means other than ischemia: hyperthermia, 
exercise, cardiac pacing, ethanol, volatile anesthetics, 
and a host of others including ozone [70-88].

A 1996 study ascribing a complex temporal signature 
to the PC phenomenon complicated the picture even 
further [89]. The initial period of heightened resistance 
to ischemic injury disappears after about 2-3h but then 
protective effects recur in echo-like fashion about 24h 
later and persist for up to 48-72h; this is called the second 
window of protection. Researchers remain baffled as to its 

basis [90, 91]. As effects are associated with appearance 
of different mediator substances in the blood it appears to 
involve gene transcription.

Two reports in 2004 suggested that PC pulses administered 
after a period of prolonged ischemia, i.e., post-
conditioning, delivers cardioprotective effects. Post-
conditioning sequences can be applied either locally or at 
a distance with protective benefit [92, 93]. Another study 
in 2011 found that remote PC delivered during an ischemic 
episode conferred neuroprotection [94]. Thus, whether 
the conditioning sequence is delivered before, during, or 
after a sublethal injury beneficial effects are potentially 
conferred [95]. Such events can only be explained on the 
basis of an infusion of energy reserves into the blood.

PC is now regarded as the most powerful form of 
body-wide protection. It has been 35 years since its 
discovery and 10,000’s of reports in the literature have 
detailed its various aspects. Molecular biologists have 
identified dozens of potential chemical mediators and 
various mechanisms—heat shock proteins, adenosine, 
various neurotransmitters, erythropoietin, nitric oxide, 
oxygen-derived free radicals, ATP-sensitive potassium 
channels to name a few—but to date no convincing 
molecular explanation for the PC phenomenon has come 
to light [96-106].

Calabrese argues that the PC phenomenon and hormesis 
are one and the same but evidence does not support 
his claim [107, 108]. That all pharmacologically active 
substances operate in hormetic fashion does not imply that 
all agents possess the ability induce PC. Most substances 
exhibit a characteristic spectrum of dose-dependent 
side effects and appear to operate in a mechanism quite 
distinct from PC. What Calabrese and molecular biologists 
overlook is the energy equation. All molecular substances 
effect their change within a pre-existing energetic milieu 
and this is where the next discovery plays a decisive role.

Around the time Murry and colleagues stumbled upon the 
PC phenomenon the cardiology world was in the midst of 
a profound paradigm shift. For most of the 20th century 
the heart had been conceived as a mechanical pump which 
propelled blood forward through the arteries during the 
systolic phase of its cycle. Diastole, in turn, was regarded 
as a period of passive relaxation. In the early 1980s reports 
surfaced describing negative intraventricular pressures 
in early diastole which researchers soon realized must 
account for diastolic filling and the forward movement of 
blood [109, 110].

A 1986 article in Scientific American entitled The Heart as 
a Suction Pump advanced a new model of cardiac function 
[111]. A spate of articles followed in support of active 
dilation and by the late 1980s researchers had coined 
the term ‘diastolic dysfunction’ to designate a growing 
number of disease conditions associated with impaired 
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outward movement of the ventricle [113, 114]. In the mid-
1990s a paper refuted the propulsion theory of heart 
function [114]. By the 1990s imaging studies described 
spiral arterial flow currents which can only be explained 
on the basis of a suction force [115-119].

This concept explains the complex mechanics of the fetal 
heart: systolic forward force alone is insufficient to convey 
blood through the fetal circulation, extracorporeally 
through umbilical cord arteries, placenta, and then back 
into the fetus in the umbilical vein. From a dynamic 
perspective, this is impossible without a diastolic suctional 
force to augment the systolic contribution. Similarly, the 
diastolic dysfunction described above in adults is seen in 
the fetus manifesting as abnormal diastolic waveforms 
seen by Doppler velocimetry. An early diastolic suctional 
force in the heart has been demonstrated following 
delivery of the infant [111-115].

Since the introduction of the electrocardiogram in the 
early decades of the 20th century scientists assumed that 
electrical currents flowing through the nerves along 
the outer surface of the heart caused the ventricles to 
contract despite the fact that the heart possesses intrinsic 
rhythmicity and continues to function in the absence 
of nerves. Nor did scientists consider what happens to 
the electrical currents seen on ECG after they ostensibly 
induce contraction of the heart. Do they vanish into thin 
air?

Evidence suggests that electron currents are drawn 
through the nerves by the contraction of the heart and 
infused directly into the blood. The excess of negative 
charge induces formed blood elements like proteins to 
repel which initiates active dilation during the succeeding 
diastolic phase. Those familiar with Faraday’s Law will 
recognize that the spiral motion of the blood and its 
electrical currents generates an electromagnetic field 
which is distributed to cells and tissues throughout the 
body. There is not one but two circulations: one of flowing 
fluids, the other of flowing energy currents [120].

The notion of an organized blood-borne energy field is 
not new. It was first advanced by Roman physician Galen 
in the late 2nd century AD and was accepted as fact by 
physicians for 1500 years until it was arbitrarily discarded 
by chemically oriented scientists and physicians in the 
17th and 18th centuries. In Galen’s humoral system of 
medicine, the energy and nutrient substances needed to 
drive all bodily functions came from the blood [121].

Deterioration of the heart-blood energy field forms the 
basis of numerous chronic diseases. A plethora of reports 
link diastolic dysfunction to coronary artery disease, 
chronic heart failure and other cardiac conditions; diastolic 
dysfunction is associated with metabolic syndrome X, 
first described in the 1980s, and the cluster of associated 
disturbances including hypertension, insulin resistance, 

diabetes, and obesity [122, 123]. Equally these chronic 
diseases reflect impaired energy generation in the blood 
and, as we will see, it is on this basis that the powerful 
effects of ozone PC are mediated.

Ozone Preconditioning

Hormesis is not a new concept. Roman poet Marcus 
Lucan introduced the term immunis, meaning exemption 
from duty or fate, in the 1st century AD when writing of 
the legendary resistance of the African Psylli tribe to the 
effects of venomous snakebite. For centuries it was known 
that exposure to small doses of a toxin confers protection 
to subsequent larger amounts of it. During the 19th 
century homeopathic physicians recognized this principle 
at play in Jenner’s introduction of vaccination. But 
description and explanation are two different things. In 
PC one comes face-to-face with the dynamics behind this 
long-established principle. And as in the case of molecular 
biologists, one cannot explain the PC phenomenon 
without invoking the presence of an organized energy 
field in the blood.

PC comprises two opposing aspects: the immediate 
consequences of the toxic assault and the protective 
response initiated by the body to counteract its noxious 
influence. A dramatic display of this PC effect is seen 
with ozone, possibly the most powerful PC agent yet 
discovered. Ozone’s primary effect is induction of brief 
oxidative injury, especially on membrane lipids, which 
impairs mitochondrial energy generation and leads to 
formation of reactive oxygen and nitrate species which 
compound cellular injury. Such oxidative insults on the cell 
machinery trigger release of pro-inflammatory cytokines 
that elicit an immune response further aggravating cell 
damage. The cascade of events induces a self-amplifying 
spiral of deterioration in cells which is then counterpoised 
by an infusion of energy into the blood resulting in the 
first window of PC protection.

While ozone’s effects are well known, its mechanism of 
action remains unclear. Ozone, triatomic oxygen, exists in 
various mesomeric (resonance) states and is 10-15X more 
soluble in water than is diatomic oxygen. Once in contact 
with bodily fluids it immediately solubilizes and effects are 
likely mediated via an induced resonance state in water, 
which accounts for the body-wide actions. While diatomic 
oxygen is an avid electron scavenger, dissolved ozone is 
an uber energy sink that draws electron-equivalents from 
biomolecules leaving them in an energy-poor oxidized 
state. This results in conversion of polyunsaturated fatty 
acids in plasma into various lipid oxidation products: 
lipoperoxyl radicals, hydroperoxides, malonyldialdehyde, 
and 4-hydroxy-2,3-transnonenal (HNE) and more [124-
127].

Molecular biologists claim that lipid oxidation products, 
especially HNE, pass throughout the body and act as 
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messenger substances to turn on gene function and 
transcription of biomolecules which then counteract the 
injurious effects of ozone. But this explanation makes no 
sense. Ozone induces profound depletion of intracellular 
energy reserves with resultant mitochondrial dysfunction 
and build-up of free radical species. Given that gene 
transcription and protein synthesis are energy-requiring, 
from where does the energy come to carry out such 
constitutive processes? At this point the molecular 
account falls apart [128-131]. The PC response begins 
above the tissue level and has its origins in the blood.

Blood cells, in particular erythrocytes (RBCs), are the 
first to experience the oxidative effects of ozone and to 
mount a response. RBCs, highly metabolically active, 
form a large part of the intravascular compartment with 
an estimated mass of up to 2.3 kilograms. Upon contact 
with ozonated water, RBCs undergo a transient dose-
dependent decrease in energy flux, estimated to be in the 
5-25% range over a period of 15-20 minutes, and then 
respond with a rebound surge in energy release along with 
outpouring of antioxidants. Ozone induces up-regulation 
of glycolytic enzymes in RBCs with activation of the Krebs 
cycle, enhanced ATP synthesis, and production of NADPH 
reducing equivalents which spill into the blood and 
neutralize the oxidizing effects of ozonated water [132-
136].

Heightened energy output by the RBC mass translates 
directly into increased blood flow and energy delivery 
to peripheral tissues. RBCs possess the enzyme nitric 
oxide (NO) synthase and generate large amounts of NO 
in response to oxidative stress that not only increases 
RBC hardiness and deformability but interacts with 
endothelial-generated NO to maintain active vasodilation 
(a reliable proxy for blood energy content) [137-148]. 
Ozone-related oxidative stress triggers activation of 
hypoxia inducible factor-1 (HIF-1) which, in turn, 
augments release of vascular endothelial growth factor 
(VEGF) and erythropoietin (EPO) which stimulate 
angiogenesis, blood flow and oxygen delivery to peripheral 
tissues [149].

It is clear that the first phase of the PC response, aimed at 
generating increased blood energy levels, is responsible 
for orchestrating subsequent events at the cellular level. 
Energy currents, carried in the interstitial fluid space, 
enter cells via ion channel mechanisms and, in short 
order, enhance mitochondrial function and intracellular 
energy metabolism as well as inducing a plethora of 
genes that actively counteract oxidative stress. Equally 
clear is that the second window of protection is mainly 
driven by events at the cellular level as a result of gene 
induction. Critical response pathways include nuclear 
factor erythroid 2-related factor 2 (Nrf2) and the heme 
oxygenase-1 enzyme (HO-1) system.

The powerful antioxidant and anti-inflammatory effects 

unleashed throughout the body by low dose ozone 
administration are mediated through activation of the 
transcription factor Nrf2. Nrf2, master regulator of 
redox balance, binds to over 200 different genes, known 
as the antioxidant response element (ARE), and effects 
transcription of cytoprotective substances like heat 
shock proteins, antioxidant and detoxification molecules, 
enzymes involved in synthesis of glutathione, a host of 
growth factors like VEGF and EPO, and more. The Nrf2-
driven battery of gene products also effects breakdown 
and/or refolding of misfolded proteins, DNA repair, 
mitochondrial rebuilding, autophagy regulation, as well 
as intracellular metabolism. Impaired Nrf2 function is a 
hallmark of many chronic disease conditions [150-156].

This robust counter-response is facilitated by disassembly 
of the very cell from which the PC phenomenon originates: 
the RBC. Since its discovery in 1968 it was widely 
assumed that HO-1 was involved solely in haemoglobin 
degradation and bilirubin metabolism but by the late 
1980s, it was recognized that it is induced by factors that 
produce oxidative stress like ischemia, hyperthermia, 
endotoxins, heavy metals, and that it plays a role in the 
PC response and cell homeostasis. HO-1, with strong 
anti-inflammatory properties, regulates processes like 
apoptosis, cell proliferation, and angiogenesis. And 
bilirubin, long thought to be an inactive haemoglobin 
breakdown product, is now known to be a potent 
antioxidant [156-167]. It all comes full circle in the blood.

One of the most striking downstream effects of ozone PC 
is modulation of the inflammatory response. Intracellular 
inflammation is mediated by the NLRP3 inflammasome, 
a multiprotein complex that integrates stress signals 
from the extracellular fluid space, so-called pathogen- 
and damage-associated molecular patterns, and internal 
stress signals such as reactive oxygen species related to 
mitochondrial dysfunction. Stress signals lead to NLRP3 
activation with release of proinflammatory cytokines 
IL-1 b and IL-18 and caspase-1 dependent apoptosis 
(programmed cell death). Ozone PC asserts anti-
inflammatory and anti-apoptotic effects via suppression 
of NLRP3 inflammasome activity. This effect can only be 
explained by the direct infusion of energy currents into 
mitochondria. Since abnormal inflammasome activation 
is a prominent feature of various chronic conditions like 
Alzheimer’s, autoimmune disorders, cardiac and renal 
disease, as well as acute inflammatory syndromes like 
Covid-19, it has been suggested that ozone PC could 
modulate disease activity in these circumstances [168-
183].

Ischemia-Reperfusion Injury

Given the presence of a blood-borne energy field that 
drives all functional processes in the body, it stands 
to reason that oxidative injury and its deleterious 
consequences, or allied conditions like inflammation, 
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must represent primary energy deficiency states. Equally, 
associated symptoms, the chest pain of angina pectoris 
or neurologic deficits of stroke for example, must be 
conceived along similar lines. To better understand the 
dynamics of the PC-associated corrective physiology we 
examine another common and unexplained phenomenon 
known as ischemia-reperfusion injury (IRI).

IRI, like PC, has been a topic of great interest in 
recent years. Reperfusion injury refers to a cascade of 
catastrophic events set into motion by impaired energy 
dynamics which arise because of attempts to intervene 
in dire clinical situations like myocardial infarct, stroke, 
or organ failure. In all cases, whether as a consequence of 
angioplasty, thrombolysis, surgical bypass, or
transplantation, a prolonged period of flow interruption 
between the vascular compartment and affected organ 
had been present and, upon reestablishment of flow, 
a cascade of adverse events ensues. While the cellular 
and molecular events related to IRI vary from organ to 
organ, underlying dynamics are the same. The primary 
dysfunction involves a maladaptive interplay between the 
vascular and intracellular fluid compartments [184-191].

The events associated with IRI are exactly those which PC is 
known to prevent: cell death, disruption of tissue viability 
and architecture, accumulation of fluid and/or blood in 
the tissue spaces, and loss of organ function. There are 
localizing biochemical abnormalities depending on which 
organ is affected. In the heart arrhythmias and contractile 
dysfunction often occur. The spiral of deterioration begins 
after blood flow has been re-established and, depending 
on the severity of injury, evolves over hours to days. 
IRI is said to occur in about 20-60% of rescue attempts 
depending on the type of intervention, involved organ, 
and preexisting status of the patient. The appearance of 
IRI counteracts any intended benefit of the procedure 
and, moreover, may precipitate organ failure or death.

IRI was first described in 1960 after prolonged coronary 
artery ligation in dogs [192]. Contrary to expectations, 
reperfusion seemed to accelerate the extent of heart 
damage. Histologic changes after 30-60 minutes of 
IR were similar in severity to those observed after 24 
hours of permanent occlusion. For decades it remained 
controversial whether reperfusion of a blocked vessel 
caused tissue injury. Evidence now indicates it promotes 
additive damage upon pre-existing ischemic injury. 
There are no reliable pharmacologic therapies by which to 
lessen its effects.

In a 2005 study, after stents were deployed across 
occluded coronary artery segments, researchers applied 
a post-conditioning sequence using repetitive inflation-
deflation cycles with a coronary angioplasty balloon and 
observed a 36% decrease in the size of the affected area 
[193]. Such results indicate that the effects of IRI can be 
mitigated. It also points to the fact that the beneficial 

effects of PC and the detrimental effects of IRI revolve 
around a single primary phenomenon: the disposition of 
energy. Many studies substantiate the effects of ozone PC 
in preventing or ameliorating IRI-induced tissue injury 
[194-224]. Studies support the equivalency of ozone PC 
and ischemic PC [225-226].

The distorted dynamics of IRI can, once again, be 
understood by distinguishing between events arising 
from the primary oxidative injury and corrective attempts 
originating in the arteries and blood. Once arterial occlusion 
occurs cells shift to anaerobic energy metabolism leading 
to intracellular acidosis and free radical generation. 
Given the inefficiencies of such pathways the longer the 
duration of ischemia the greater the extent of cell damage. 
Once blood flow into the ischemic zone is re-established 
the metabolism shifts rapidly in the opposite direction, 
from anaerobic back into aerobic pathways, often with 
disastrous consequences.

As oxygen/energy diffuses into cells there is rapid reversal 
of acidosis with elevation of pH and corresponding shifts 
in ion currents. But incomplete reduction of oxygen 
inside cells persists and produces more free radicals 
that overwhelm antioxidant pathways and further 
aggravate cell injury. Reactive oxygen species interact 
with lipids and proteins to generate toxic oxidative 
products that compound injury. Progressive deterioration 
of electrochemical gradients across cellular and 
mitochondrial membranes eventually leads to cell death. 
Events at the cellular level are only part of the chaos.

As flow returns to the energy-starved tissues a host of 
blood-borne processes are set into motion that exacerbate 
the situation. Endothelial cells lining the previously 
occluded arterial segments resume function and vascular 
permeability increases to allow passage of immune cells 
and mediator substances into tissues surrounding the 
infarct. Immune cells release more cytokines intensifying 
inflammation. Neutrophils and endothelial cells produce 
even more free radicals, vasoactive substances and 
adhesion molecules that worsen effects. The final insult 
of IRI is microvascular obstruction with stasis of blood 
flow, the so-called no-reflow phenomenon, in which flow 
into the ischemic zone ceases altogether due to adhesion 
of blood elements, vasoconstriction of arterioles, and 
collapse of the capillary bed due to interstitial edema 
[227].

The most significant determinants of IRI are duration of 
tissue ischemia [228-230] and the pre-existing state of 
the cardiovascular system [231-235]. IRI is more likely to 
occur and to be more severe in conditions like diabetes, 
hypertension, heart failure, the metabolic syndrome, as 
well as with increasing age, i.e., the same conditions in 
which PC is blunted or absent.
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The most consistent finding in IRI is microvascular 
dysfunction [236-244]. NO is a proxy for energy flux 
through the blood. Multiple reports link diminished NO 
with impaired dilation [245, 246]. Decreased NO levels 
correlate with vasoconstriction during reperfusion 
[247]. But while mediating vasodilation, in the presence 
of extensive tissue injury NO serves as a source of free 
radicals which cause further damage [248-250]. During 
IRI there is disturbed endothelial function involving all 
small blood vessels—arterioles, capillaries and venules—
with impaired dilation and outward passage of fluid 
and immune cells along with decreased reabsorption of 
interstitial fluid by post-capillary venules. Such reports 
point to a distinct functional layer centered in the vascular 
compartment mediated by dilation, contraction and the 
flow of energy.

The detrimental consequences of IRI, like the beneficial 
effects of PC, are distributed throughout the vascular 
compartment: organ failure at one site can induce remote 
organ injury. A 2000 study found that prolonged intestinal 
ischemia with IRI induced microvascular dysfunction in 
the lungs with impaired alveolar-capillary functions and 
pulmonary hypertension [251]. Another study produced 
acute lung injury in rats by prolonged cross-clamping 
of the abdominal aorta [252]. Affected animals showed 
increased microvascular permeability and elevated pro-
inflammatory cytokines. In a 2006 study IRI in the liver 
was associated with acute lung injury with alterations in 
NO levels and inflammatory cytokines [253]. IRI in the 
intestines triggered liver dysfunction with accumulation 
of leukocytes and inflammatory injury [254]. Another 
report found that IRI in the liver induced cardiac 
dysfunction [255]. All these adverse consequences are 
triggered by dysfunction originating in the energy field.
 
Microvascular dysfunction associated with IRI is prevented 
with preconditioning or lessened by postconditioning 
[256-261]. By 1993 evidence suggested that PC induced 
tolerance to the effects of IRI [262]. A 1994 study found 
that ischemic PC protected against coronary endothelial 
dysfunction associated with IRI [263]. Similar results 
were reported in 2003 [264]. Ischemic PC preserves 
intracellular ATP, enhances functional recovery, and 
coronary reflow during reperfusion [265]. A 2017 study 
found that remote PC protects against liver IRI through a 
NO-mediated mechanism, implicating an influx of energy 
into the vascular compartment [266]. Beneficial effects of 
ozone PC in experimentally-induced IRI have been shown 
in heart, lung, liver, kidneys, intestines, and ovaries.
 
How are all these diverse effects orchestrated unless 
influenced by a common effector substance? The 
conclusion is inescapable: PC and IRI are two sides of 
the same coin, their opposing effects mediated by the 
disposition of energy in the blood and interstitial fluid 
space. No definitive answer is to be found in the maze of 
cellular and molecular pathways.

The Case for Ozone

Having examined ozone PC we can distill principles 
with regard to its mechanism of action and speculate 
on various disease states that might be responsive to its 
effects: by inducing oxidative stress in RBCs it triggers 
a surge of energy in the blood which passes through the 
interstitial fluid space, across cell membranes, and into 
the cytoplasm where it directly stimulates mitochondrial 
metabolism and activates Nrf2, the transcription factor 
responsible for switching on hundreds of genes involved 
in the counter-response. Ozone PC induces a shift from 
anaerobic to aerobic metabolism, triggers release of free 
radical scavengers, shuts off pro-inflammatory cytokine 
signals, quells the immune response and, finally, activates 
intracellular repair and upbuilding processes. Quite an 
impressive résumé.

Accordingly, if we compile a list of candidate conditions 
for ozone PC, we would seek those associated with 
mitochondrial dysfunction and oxidative injury, those 
with pro-inflammatory cytokine signatures, and those 
with functional and symptomatic deficits attributable 
to defective energy generation. As it happens, that list is 
quite long and comprises many of the most commonly 
encountered entities, both acute and chronic, seen 
in modern clinical practice. And, unfortunately, that 
expansive list is closely linked to the failure of 20th century 
medical science to address energy dynamics in the blood.

Over the past 40 years there has been a global explosion 
of chronic conditions unparalleled in recorded human 
history: diabetes, obesity, hypertension, the metabolic 
syndrome, chronic organ failure syndromes involving 
heart, kidneys and liver, autoimmune disorders, 
neurodegenerative diseases like Alzheimer’s, Parkinson’s, 
Huntington’s and amyotrophic lateral sclerosis, a host 
of chronic pain syndromes, chronic asthma and allergic 
conditions and a litany of others. Some regard this 
epidemic of epidemics as the fallout of industrialization, 
others as the human accompaniment of climate change. 
In any event, medical science, to date, is neither able to 
prevent nor alter their progression. Not only is ozone PC 
effective in a wide range of chronic disease states but in 
acute infectious conditions like Covid-19.

A 2019 review of ozone treatment in acute infectious 
disease concluded that it is effective in either adjunctive 
or stand-alone modes. Ozone has virtually no side 
effects and does not induce microbial resistance patterns 
like pharmacologic therapies [267]. Numerous studies 
affirm ozone’s efficacy and safety in Covid-19 disease 
[267-281]. Thorp et al. describe mechanisms by which 
ozone therapy affects Covid-19 outcomes: increased 
antioxidant production, induction of Nrf2- and HO-
1-mediated nuclear mechanisms, down-regulation of 
pro-inflammatory immune pathways, direct toxic viral 
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effects, inhibition of viral replication and increased blood 
and tissue oxygenation [279]. Various reports suggest 
that ozone’s capacity to stimulate immune function, 
modulate inflammation and suppress viral activity augur 
a whole new therapeutic paradigm [280].

Ozone therapy reduced viral titers and improved clinical 
symptoms in Covid-19-infected ICU patients [280]. Other 
studies found that ozone shortened time-lines for clinical 
improvement [281]. Since ozone confers protection 
against organ-injury in ischemia-reperfusion injury it 
only stands to reason that it should prevent or mitigate 
multi-system organ failure associated with advanced 
Covid-19 infection if administered in a time-sensitive 
manner. Given its widespread availability and negligible 
cost it is utterly baffling why medical scientists failed to 
implement ozone therapy during the Covid-19 pandemic; 
ozone and drugs like hydroxychloroquine, ivermectin, 
and others have been widely used to effectively treat 
Covid-19 in outpatient settings. Undoubtedly such a 
strategy would have saved countless lives. It is predictable 
that this catastrophic oversight will become the subject of 
great controversy in coming years.

In that autoimmune disease is defined by chronic recurrent 
inflammatory episodes involving organs and tissues and 
characterized by similar dynamics as acute inflammation, 
i.e., activation of the immune system, elevated levels of 
pro-inflammatory cytokines, mitochondrial dysfunction 
and oxidative stress at the cellular level, it would be 
expected that they too would be ideal candidates for 
ozone PC [282-291]. A handful of clinical reports confirm 
its efficacy in multiple sclerosis with down-regulation 
of the pro-inflammatory state and amelioration of 
oxidative stress [33-38][292-294]. Similar results have 
been obtained in laboratory experiments with animal 
models of rheumatoid arthritis and psoriasis [282-
287], and with fibromyalgia [295-301]. Although data is 
limited, given the presence of mitochondrial dysfunction, 
oxidative injury, and inflammation in affected neuronal 
populations in the neurodegenerative disorders [302-
305], it would seem that these conditions too would be 
suitable candidates for ozone PC.

In the previous section we described the powerful effects 
of PC in preventing or mitigating ischemia-reperfusion 
injury in various organs including the kidneys, heart, 
liver and lungs suggesting the potential of ozone therapy 
in stabilization or reversal of organ failure syndromes. 
Many studies document the benefits of ozone PC in 
improving kidney function in a wide range of pathologic 
states [175][306-320]. Ozone reduces lithotripsy shock 
wave therapy-induced renal injury [333]; reduces renal 
inflammation [335], reduces inflammation and renal 
injury in acetaminophen-induced nephrotoxicity [313]; 
improves acute nephrotoxicity induced by cisplatin [319], 
and; attenuates contrast-induced nephropathy [311].
By the same token the protective effects of ozone PC on 

liver function in ischemia-reperfusion injury suggest 
its potential in the treatment of various chronic hepatic 
conditions that to date are largely refractory to current 
medical therapies like non-alcoholic fatty liver disease, 
chronic hepatitis and early forms of cirrhosis [321-327]. 
The incidence of fatty liver disease has exploded in recent 
decades and it is now a leading cause of hepatic failure 
and subsequent transplantation. Ozone has been used 
successfully in a large number of infectious diseases 
and has been shown to significantly reduce viral loads 
in Covid-19 as noted above but is also effective in other 
viral infections including hepatitis C, hepatitis A, and HIV 
[267][321-326].

A similar argument can be made for its use in the global 
epidemic of chronic heart failure [329-331], a leading 
cause of hospitalization in people over sixty years of 
age. No pharmacologic treatments prevent the insidious 
and progressive deterioration of heart function in those 
affected. Given that oxidative stress and mitochondrial 
dysfunction drive airway inflammation in chronic 
obstructive pulmonary disease, it seems that ozone PC 
could play a role in mitigation of pulmonary symptoms in 
such cases [331, 332].

The explosion of diabetes and the metabolic syndrome 
over the past four decades has radically changed the 
health care landscape and the need for new, effective and 
low-cost treatments has never been greater. Undoubtedly 
diabetes and the metabolic syndrome originate in the 
blood as a result of deterioration of its energy field. It is 
well-known that the PC response is blunted or absent in 
diabetes and the metabolic syndrome. To our knowledge 
no studies have directly examined the effect of ozone PC 
on the underlying disease conditions but multiple reports 
describe beneficial effects on diabetic foot ulcers and skin 
wounds which are often refractory to current therapies.

Diabetic ulcers, now seen with increasing frequency, 
are multifactorial in nature and attributable a host of 
overlapping factors like coexisting vascular disease, 
peripheral neuropathy, immunologic abnormalities and 
superimposed infection. Multiple reports document 
beneficial effects of ozone therapy on both diabetic and 
non-diabetic wound healing [333-343]. Ozone promotes 
healing of diabetic ulcers by modulating all the various 
contributing factors: enhancing blood flow through nitric 
oxide induced endothelial dilation, increasing energy flow 
through peripheral nerves, shifting the immune response 
toward anti-inflammatory pathways and curbing 
infection. Lesions are treated with topical ozonated oils, 
ozone ‘tents’ and intravenously [344-348].

Ozone PC has been used to treat a wide array of acute and 
chronic skin wounds beyond diabetic ulcers including 
bed sores, post-traumatic ulcers, burns, chronic viral 
infections like human papilloma virus and herpes, vaginal 
infections related to candida, trichomonas and chlamydia 



Ozone Preconditioning: Waking up the dragon

Thorp KE, Thorp JA. Ozone Preconditioning: Waking up the dragon. G Med Sci. 2021; 2(3): 010-039. 
https://www.doi.org/10.46766/thegms.intmed.21051402

18

overgrowth, rectal abscesses and fistulas, as well as oral 
aphthous ulcers [344-348]. In their systematic review 
of ozone treatment in chronic wounds Fitzpatrick et al. 
found significant improvements in healing and wound 
closure [344]. In other studies using animal models 
researchers found increased numbers of fibroblasts and 
collagen deposition as well as humoral factors like VEGF 
and transforming growth factor- b suggesting accelerated 
healing responses [343, 346].

An increasing number of reports document the 
effectiveness of ozone PC for pain relief in a variety of 
chronic conditions including low back pain related to 
disc herniation, degenerative disc disease, sciatica, failed 
back surgery, as well as post-traumatic, inflammatory, 
and degenerative joint pain [19-28][349-366]. In such 
cases ozone has been injected directly into the disc space, 
neural foramen or joint capsule. In a large outcome study 
of 2900 patients with lower back pain and sciatica, Muto 
et al. [365] found that intra-discal and intra-foraminal 
ozone administration was a safe and efficacious means 
of treating low back pain. Other studies suggest that 
symptom relief with ozone was greater than with 
conventional steroid injections.

In these various chronic pain conditions ozone PC appears 
to assert its effects through the same means we have 
already highlighted: enhanced RBC-driven generation of 
blood-borne energy, increased endothelial-dependent 
vasodilation and blood flow into the microcirculation, 
increased oxygen delivery to the tissues, optimization of 
mitochondrial function with reduction of intracellular 
stress, and down-regulation of inflammation. The 
diminished pain perception reported in so many studies 
can only be attributed to increased energy currents 
through sensory nerves. On what another basis can this 
be explained?

The great advantage of ozone lies not only in its ability to 
trigger energy generation in the blood but in its simple 
means of production and ridiculously low cost. Just as 
early scientists scented its presence in the air following 
lightning strikes, ozone can literally be produced 
anywhere there is an oxygen source and an appropriate 
voltage gradient. Its ease of administration and wide 
variety of potential routes puts many pharmacologic 
substances to shame: intramuscular, subcuticular, 
intra-articular, direct intravenous injection, infusion of 
ozonated-saline, rectal / bladder / vaginal insufflation, 
trigger point injections, and others [19-28][327-348]
[267][295][305].

In addition to its remarkable and durable track record 
in improving clinical and laboratory parameters in a 
wide range of acute and chronic disease, ozone has been 
shown in many clinical studies to have virtually no side 
effects when administered along established dosing 
guidelines. It is not hyperbole to say it is far safer than 

most over-the-counter medicines now available. Given 
the overwhelming evidence it is not only bewildering but 
profoundly distressing to observe the numerous attempts 
in recent years by various oversight agencies to restrict 
and suppress the use of ozone by health practitioners 
and the general public as a preventive and therapeutic 
modality [369-376].

This is particularly relevant given a 2016 study by Makary 
and Daniel [377] in BMJ which found that medical errors 
in US hospitals accounted for approximately 252,000 
deaths annually making it the third leading cause of 
death. Another epidemiologic study reported by Lazarou 
et al. [378] in JAMA suggests that drug-related deaths 
may account for up to 50% of this burden. Along these 
lines we would be remiss if we failed to point out that 
since the beginning of the 20th century when the modern 
therapeutic era was inaugurated medical science has yet 
to cure a single class of disease. Ozone PC may be its last 
chance to finally get things right.

Paradigm Shift

In his ground-breaking work The Structure of Scientific 
Revolutions (1962) science historian Thomas Kuhn points 
to an under-appreciated aspect of experimental science: 
as discoveries are made and new facts come to light, the 
nature of scientific knowledge must change in accordance 
with those new facts. Science is fundamentally an 
evolutionary (and revolutionary) undertaking. Kuhn 
coined the term ‘paradigm’ to refer to an explanatory 
theory and its allied methods and practices. The entire 
history of the experimental sciences is little more than a 
series of boom-bust cycles characterized by the rise and 
fall of successive paradigms. The collapse of an existing 
paradigm is always heralded by its inability to explain the 
nature of new facts.

Since the beginning of the 20th century medical science has 
based all its theories on data derived from the molecular 
and cellular layers of process. During this time causal 
explanations have come and gone with striking frequency 
because molecular and cellular processes are not the 
only events that transpire inside the body. Molecular and 
cellular accounts describe but do not explain. The only 
convincing explanation for the described phenomena is 
the presence of a blood-borne energy field.

The discovery of the primacy of the diastolic phase of the 
cardiac cycle (and collapse of the systolic-based heart 
model) along with the recognition of the preconditioning 
phenomenon in the 1980s upended the 20th century 
molecular-cellular paradigm. The subsequent recognition 
of ozone as the most powerful preconditioning agent yet 
discovered was only the straw that broke the camel’s 
back. In this sense we can say that the current biomedical 
paradigm no longer exists as a conceptual reality nor does 
it have therapeutic relevance.
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The new blood-borne energy-based dynamic paradigm 
and its allied concept of preconditioning with substances 
like ozone must now come to the forefront and not only 
replace the decayed molecular-cellular paradigm but 
attempt to repair and reverse the incalculable damage 
inflicted by this obsolete perspective. The king is dead, 
long live the king!
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