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INTRODUCTION
The autoimmune disorders, the last major class 
of disease to be recognized by medical science, 
present us with a paradox concerning the immune 
system: originally conceived as a barrier against 
pathogenic microorganisms that would breach the 
body's external boundaries, one is led to question 
why, inexplicably, it should suddenly turn against 
the body and attack its own tissues? The notion was 
so counterintuitive that early 20th century immune 
researcher Paul Ehrlich advanced the doctrine of 
horror autotoxicus, arguing that such a possibility 
would be utterly 'dysteliologic' [1-3]. 

And yet evidence in support of autoimmunity was 
present from the beginning. By the early years of the 
20th century, it was known that immune reactions 
could be damaging rather than protective: in 
1902 Richet reported on anaphylaxis; in 1906 von 
Pirquet described allergy and immune-complex 
disease. Perhaps such reactions seemed more 
palatable to turn-of-the-century scientists as they 
were directed against environmental substances. 
Autoimmunity, however, remained a conceptual 
bête noire until mid-century.
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The paradox dissolves once one recognizes that 
it originated largely in how scientists expected 
the immune system should behave. Early in the 
formation of their science they seized upon certain 
notions, like the nature of inflammation or the 
primacy of the antibody response, that rather 
soon became accepted as fact. In the century 
that followed a stream of reports challenged 
these orthodox conceptions and begged for a 
fundamental reappraisal of ideas but this never 
happened. The recent SARS-CoV-2 pandemic 
exposed grave flaws in 20th century immune theory 
that must now be rectified.

Equally, it raises concerns about experimental 
science itself and the inability of researchers to 
reexamine their assumptions and make in-course 
corrections. Reflexivity has never been a defining 
attribute of the science community. Instead, 

scientists have been subject to speculative (and 
reactive) thought formation as well as to the sway 
of opinion leaders who, by and large, have steered 
its development. From the onset science possessed 
all the characteristics of other mass movements 
that came to define the 20th century.

As in other mass phenomena scientists were 
collectively swayed by a sense of awe over its 
potential to amass power and effect change. Peter 
Medawar, one of the architects of 20th century 
immune theory and co-recipient of the 1960 Nobel 
Prize wrote: 'In terms of the fulfillment of declared 
intentions, science is incomparably the most 
successful enterprise humans have ever engaged 
upon. Visit and land on the moon? A fait accompli. 
Abolish smallpox?  A pleasure . . .' [4] (Figure 1). 
Scientists' confidence in their venture has never 
waned even an iota.

Figure 1:  Immunologist Peter Medawar, discoverer of immune tolerance, co-recipient of the 1960 
Nobel Prize, claimed that the basis of the immune response centered around the ability of the immune 

system to distinguish between self and non-self.

(From: https://quotesgram.com/peter-medawar-quotes/)
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Early 17th century scientists coined the maxim Plus 
Ultra, meaning 'further beyond', implying no limit 
to the advance of scientific knowledge or the power 
science would accrue. Three-and-a-half centuries 
later Medawar echoed the same sentiment: 'Never 
once in the history of science have we reached a 
Non Ultra', i.e., a point beyond which no further 
progress is possible, 'nothing can impede or halt 
the advancement of scientific learning . . .'. Science 
became destiny.

But it would seem that scientists have met their 
match in the surging epidemic of chronic disease: 
autoimmune disorders, chronic heart failure, 
chronic kidney disease, neurodegenerative disease, 
epilepsy, diabetes, the metabolic syndrome, and a 
host of cancers now spread unchecked across the 
globe and are largely refractory to their treatments. 
Heroic science-based physicians can perform life-
saving organ transplants but can't cure a simple 
case of asthma. Something is amiss.

In the 1980s evidence surfaced in the medical 
literature overturning the accepted model of 
cardiac function that had dominated 20th century 
medical thought. This was but the first of other 
dominoes that would fall. Emerging evidence now 
points to the presence of an organized energy field 
originating in the blood through the contraction 
and dilation cycles of the heart that organizes all 
bodily functions [5, 6].

This blood-borne energy field was described 
in detail by 2nd century Roman physician Galen 
and was accepted as fact by physicians for over 
1500 years until it was arbitrarily discarded by 
chemically-oriented physicians in the 17th and 18th 
centuries [7]. Central to Galen's humoral system 
of medicine was the doctrine of omnia incipit in 
sanguine, everything begins in the blood. Based on 
this notion all bodily inflammation was regarded as 
an indication of deficient energy generation in the 
blood.

In this paper we examine the autoimmune disorders 
(AIDs) not from a cellular/ molecular standpoint 
as scientists have attempted for decades but from 
a dynamic energy-based perspective. Not only 
does this framework account for the origins of 
these disorders but it explains phenomena that 
cell-based mechanisms cannot. In addition, we 
examine the historical basis of 20th century immune 
theory and point to serious errors in the research 
literature that have lain unrecognized for over a 
century and which led to broad misconception of 
immune functions.

THE MANY FACES OF INFLAMMATION

The AIDs represent a clinically diverse group of 
conditions said to arise from 'dysregulation' of the 
immune system leading to inappropriate activation 
of lymphocyte and macrophage cells, production 
of auto-antibodies (auto-Abs), and increased levels 
of pro-inflammatory cytokines like tumor necrosis 
factor-α, interferon-γ, interleukin (IL)-1, IL-2, IL-6, 
IL-17 and others in affected tissues and the blood. 
Scientists claim such dysregulated immune activity 
results from a loss of 'self-tolerance', i.e., inability 
of immune cells to distinguish between self and 
non-self, which they ascribed to genetic mutations 
[8, 9].

Over 80 self-directed inflammatory syndromes have 
been described ranging from relatively common 
conditions like type I diabetes, thyroiditis and 
rheumatoid arthritis to rare disorders like Guillain-
Barre syndrome, myasthenia gravis or scleroderma 
[10]. They may affect single organs as in the case 
of multiple sclerosis, thyroiditis or diabetes, or 
manifest systemically and involve multiple organs 
as with systemic lupus erythematosus (SLE) or 
vasculitis. A single entity like diabetes can cluster 
in multiple family members while multiple AIDs 
can affect the same individual. In recent years so-
called overlap syndromes have been described in 
which distinct entities like rheumatoid arthritis and 
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SLE, called 'rhupus,' coexist in the same individual 
[11-16]. The AIDs defy simple classification [17].

In the liver inflammation may affect hepatocytes 
to manifest as hepatitis or involve bile ducts and 
present as primary biliary cirrhosis. In the skeletal 
system it may present as rheumatoid arthritis, 
ankylosing spondylitis, or psoriatic arthritis. 
Psoriasis, on the other hand, characterized by 
chronic, recurrent skin lesions, may coexist 
with arthritis, inflammation of ligaments and 
tendons, or uveitis [18]. Crohn's disease, with 
origins in the bowel, frequently coexists with 
extra-intestinal disease involving the skin, joints 
or eyes [19, 20]. Given the striking overlap of 
symptoms, distinguishing among the different AIDs 
is challenging and diagnosis often prolonged and 
costly. And despite recent advances in treatment 
only a minority of affected individuals experience 
sustained remission.

The AIDs occur at any age although each 
subtype has a typical age of onset. Most AIDs 
disproportionately affect women with some, like 
SLE, having prevalence ratios as high as 10-15:1 [21, 
22]. Current opinion suggests that AID represents 
a complex interplay between genetic and 
environmental factors. Genome-wide association 
studies have implicated hundreds of genes in the 
various AIDs but none have significant predictive 
value. The concurrence of AID in identical twins 
is only 12-67% indicating that factors other than 
heredity are in play.

A plethora of environmental influences have been 
identified including diet, gut microbiota, infection, 
smoking, hormones, as well as geographical 
influences such as latitude and sunlight exposure 
[23, 24]. Included in this list are some of the 
very medicines used to treat the AIDs as well as 
vaccines [25-27]. While some of these factors play 
a permissive role, others such as sunlight exposure 
and infection are more directly involved.

The complex relation between infection and 
autoimmunity highlights the pivotal role 
inflammation plays in both disorders [28]. Bacterial 
infections can trigger self-directed inflammatory 
reactions that can be short-lived or become chronic 
and resemble the autoimmune state. Reactive 
arthritis, formerly known as Reiter's syndrome, 
may occur following infections in the genitourinary 
or digestive systems and present as inflammatory 
arthritis, uveitis, and skin lesions resembling those 
of psoriasis [29-32]. Behçet's disease is a systemic 
vasculitis characterized by recurrent ulcers in the 
mouth and genital regions, skin lesions and uveitis. 
The cause of Behçet's disease remains unknown 
but evidence points to an infectious etiology [33-
35].

More striking is the relation between the AIDs and 
viral illness. For decades it has been recognized 
that viral infections can trigger AIDs like SLE, 
rheumatoid arthritis, multiple sclerosis, vasculitis, 
and more [36-39]. Offending viruses include herpes, 
Coxsackie B, hepatitis B & C, cytomegalovirus, 
parvovirus and the whole gamut. Mechanisms 
are poorly understood but ascribed to 'molecular 
mimicry', i.e., cross-reactivity based on similarities 
in protein structure between viral antigens and 
that of the body which, in turn, is said to activate 
lymphocytic T-cells and the inflammatory cascade. 
But this says nothing about why such events should 
occur in some cases and not in others.

The SARS-CoV-2 pandemic revealed striking 
similarities between COVID-19 infection and 
the AIDs on multiple levels: overlap of clinical 
symptomatology; nearly identical inflammatory 
response patterns, particularly cytokine profile and 
appearance of auto-Abs; and worsening of pre-
existing AIDs or appearance of new AID syndromes 
after COVID-19 infection.

While fever, respiratory symptoms and sore throat 
are primary manifestations of COVID-19, frequent 
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ancillary phenomena include muscle [40-42] 
and joint [43-45] pain as well as skin rashes [46-
48] which also affect various AIDs. Widespread
endothelial inflammation is the primary
pathogenic mechanism underlying COVID-19
infection and vasculitis of small, medium and large
arteries is ubiquitous [49-56]. Endothelitis, as we
show in earlier writings, is a direct consequence
of decreased energy generation in the blood [57,
58]. In most cases acute-phase phenomena are
transitory and disappear with resolution of the
illness.

Excessive release of pro-inflammatory cytokines, 
aka the cytokine storm, was originally believed to 
be a characteristic feature of the AIDS but in recent 
decades has been linked to a variety of infectious 
and non-infectious conditions. It is now regarded 
to be a generic accompaniment of inflammation 
per se [59-63]. The cytokine storm is common in 
COVID-19 syndrome and correlates with disease 
severity. In severe cases the hyperinflammatory 
state induced by the cytokine storm drives 
subsequent respiratory distress syndrome, multi-
organ failure and coagulopathy, all of which 
reflect progressive deterioration of blood energy 
generation.

Early on the presence of auto-Abs in the blood was 
regarded as pathognomonic for the AIDs but this 
too has been refuted by a flood of contradictory 
evidence [64-68]. Numerous studies document the 
presence of auto-Abs in COVID-19 infection and the 
number increases in proportion to the severity of 
infection. Up to a dozen different auto-Ab varieties 
have been detected some individuals. Anti-nuclear 
antibodies were found in up to 35% of affected 
persons; anti-Ro/SSA in 25%; anti-rheumatoid 
factor in 19% [69]. Such auto-Abs are present in 
the blood of individuals with SLE and rheumatoid 
arthritis.

The most compelling evidence for the conjoined 
nature of the AIDs and COVID-19 is found in 
a spate of reports documenting worsening of 
pre-existing AID

 or triggering of new AID after 
COVID-19 infection or vaccination including: SLE 
[70-74], rheumatoid and other inflammatory 
arthritidites [75-86], inflammatory myositis [87-
95], myocarditis [96-99], vasculitic syndromes like 
Kawasaki's disease [100-104], type I diabetes [105-
110], multiple sclerosis [111-117], autoimmune 
encephalitis [118-120], Guillain-Barré syndrome 
[121-125], autoimmune thyroid disease [126-129], 
autoimmune hepatitis [130-134], autoimmune 
hemolytic anemia [135-139], autoimmune dermal 
conditions [140-144], scleroderma [145-148], 
and sarcoidosis [149-154]. Either we regard these 
events as random and coincidental or we must 
accept the primacy of inflammation in both forms 
of disease. Similar adverse effects are observed 
with therapies scientists employ to treat the AIDs.

In recent decades so-called 'biologic' agents have 
become popular treatments for various AIDs 
[155-156]. There are up to a dozen monoclonal 
Ab preparations that target one or another 
aspect of the 'dysregulated' immune response – 
either interleukins, interferons, tumor necrosis 
factor, or B- & T- lymphocytes – and thereby 
mitigate (but not eliminate) the inflammatory 
response. Aside from their inconvenience (they 
must be given intravenously) and prohibitive cost 
($10,000-$30,000 per year) they induce a range of 
inflammatory effects similar to what we just saw in 
viral illnesses [157].

In addition to injection site reactions [158], acute 
hypersensitivity and immune-complex phenomena 
[159-161], as well as predisposition to infectious 
complications like tuberculosis [162], auto-Ab 
formation and AIDS are not infrequent. Clinical 
symptoms include skin rashes, arthritis, muscle 
pain, oral ulcers, and photosensitivity [163-166]. 
Various studies report anti-nuclear Abs in 40-
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100% of cases, anti-DNA auto-Abs in 11-62%, and 
antiphospholipid auto-Abs in 2-12% [166-169]. 
Autoimmune syndromes include multiple sclerosis, 
optic neuropathy, uveitis, psoriasis, vasculitis, 
inflammatory bowel disease, and inflammatory 
myositis [170-193]. Another not uncommon 
occurrence, 'paradoxical inflammation', presents 
as exacerbation of the very condition for which the 
treatment is intended and, often, appearance of 
psoriasis-like areas of inflammation involving the 
skin [194-198].

To assert that AIDs have any kind of distinct and 
independent existence is an absurdity. They are 
instead variable, amorphous entities that come 
and go based on ambient conditions in the blood. 
The only plausible explanation for autoimmune 
inflammatory phenomena seen in relation to viral 
illnesses or treatment with biological agents is 
that inflammation per se is the primary driver of 
such events and must itself be secondary to some 
prior and more fundamental cause, which we have 
ascribed to a deficiency in the blood-borne energy 
field. We examine the energetic aspect in greater 
detail.

CARDIOVASCULAR DYNAMICS

In recent years another unexpected link between 
the AIDs has emerged: a shared predisposition 
for cardiovascular disease. Cardiac manifestations 
are the leading cause of morbidity and mortality 
in SLE; affected women are said to have a 7-8-
fold increased risk of developing coronary artery 
disease compared with other women [199, 200]. 
Cardiovascular disease in rheumatoid arthritis 
occurs up to a decade earlier than in the general 
population and individuals are twice as likely to 
develop heart disease [201, 202]. One study found 
evidence of myocardial ischemia in rheumatoid 
arthritis patients at a rate comparable to that seen 
in diabetics [203]. But the trail of evidence doesn't 
end there.

Similar adverse scenarios have been documented 
in most of the common AIDs including multiple 
sclerosis, scleroderma, type 1 diabetes, psoriatic 
arthritis, ankylosing spondylitis, Sjögren's 
syndrome, dermatomyositis, polymyositis and 
others [204]. Despite all emerging treatment 
options individuals with AIDs have reduced life 
expectancy in large part due to cardiovascular 
causes which include myocardial ischemia, 
inflammation and fibrosis, conduction and rhythmic 
disturbances, heart failure, and valvular disease. 
In most cases cardiac abnormalities are present 
years before individuals develop symptoms. What 
is happening here?

Scientists are at a loss to explain this excess 
cardiovascular risk. Some ascribe it to systemic 
inflammation induced by the cytokine storm and 
spillage of reactive oxygen species into the vascular 
system related to impaired cell metabolism. Others 
point to widespread endothelial dysfunction 
associated with various AIDs. The answer is both 
of the above: defective energy generation in the 
blood directly impairs endothelial function and 
cell metabolism. This compels us to reexamine 
conventional ideas about cardiac function.

For most of the 20th century medical scientists 
regarded systole as the primary phase of the 
cardiac cycle. Such notions were originally 
advanced by William Harvey in Anatomical Studies 
on the Motion of the Heart and Blood (1628): 'the 
heart does not act in diastole but in systole for only 
when it contracts is it active,' and later, 'likewise, it 
is not true, as commonly believed that the heart by 
its own action or distention draws blood into the 
ventricles' [205]. Harvey rejected a line of medical 
thought that went back nearly 1500 years to Galen 
who argued for the primacy of diastole and its 
energetic origins [206].

In the 1980s reports described negative 
intraventricular pressures in the early diastolic 
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phase of the heart cycle which, researchers soon 
realized, must account for the forward movement 
of blood and diastolic filling [207, 208]. A 1986 
article in Scientific American entitled 'The Heart as 
a Suction Pump' proposed a new diastolic-centered 
model of cardiac function [209]. In the mid-1990s 
another paper refuted Harvey’s propulsion theory 
of heart function [210]. Numerous studies describe 
spiral arterial flow currents which can only be 
explained on the basis of a suctional force which 
itself can only be explained on an energetic basis 
[211-224].

For over a century, cardiologists have claimed 
systolic contraction is induced by nerves that 
course over the outer surface of the heart but is 
this correct? In animal experiments Galen observed 
that when the heart was cut out and placed in a 
fluid bath it continued to dilate and contract, a 
phenomenon known as cardiac automaticity. By 
the same token, transplanted hearts continue 
to function in recipients even though nerve 
conduction has been interrupted. Could cardiac 
nerves serve another purpose?  

What happens during systolic contraction of 
the ventricle is similar to that which happens 
during induction of an external magnetic field by 
electrification of ferrous objects. As the ventricle 
contracts, iron in the myocardium and blood is 
brought into closer apposition while nuclei align 
and precess synchronously on the basis of field 
interactions. Electrical potentials in the nerves 
saturate the field and induce transient formation 
of a 3D magnetic field in the heart wall and 
ventricular chamber which forms the energetic 
basis of diastole. Expansion is brought about by 
conformational change in blood and heart proteins 
[225-227].

By the late 1980s numerous studies had affirmed 
the primacy of diastole in the cardiac cycle 
and, moreover, found that impaired outward 

movement of the ventricular and arterial walls, aka 
'diastolic dysfunction', was the defining feature of 
a wide range of chronic conditions including the 
AIDs, hypertension, diabetes, obesity, depression, 
cancers, as well as organ failure syndromes like 
chronic heart failure and chronic kidney disease 
[228, 229]. This is to say these conditions all 
share common energetic origins. The spiral of 
deterioration begins with a single ubiquitous 
phenomenon known as microvascular dysfunction.

In the 1970s cardiologists noticed increasing 
numbers of people who complained of typical 
angina-like chest pain and who, on exercise stress-
testing, developed ECG abnormalities consistent 
with myocardial ischemia but, surprisingly, were 
found to have normal appearing coronary arteries 
by angiography. Named Cardiac Syndrome X, 
symptoms result from diastolic dysfunction at 
the microvascular level. Blood inflammatory 
markers like C-reactive protein are often elevated. 
A preponderance of those affected are post-
menopausal women [230-233]. Originally thought 
to be benign it is now regarded as a progressive 
condition linked to poor quality of life and increased 
mortality.

Microvascular dysfunction is not limited to the 
heart but, instead, is a body-wide process. Multiple 
organs, including brain and kidneys, are affected 
[234-238]. Many with coronary microvascular 
dysfunction have abnormal brain perfusion and are 
at higher risk for neurologic problems like stroke. 
Consistent with its systemic nature, coronary flow 
reserve can be estimated by measuring waveforms 
in other vascular territories like the retinal arteries 
[239].

During periods of increased physical activity or 
emotionally stressful situations microvascular 
dysfunction impairs energy flow to the myocardium, 
aka 'decreased coronary flow reserve', producing 
scattered areas of muscle ischemia which evoke 
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anginal symptoms. Impaired microvascular 
function results in mitochondrial dysfunction in 
endothelial cells causing inflammation [240-242]. 
Such 'oxidative stress' in endothelial cells induces 
the so-called cytokine storm triggering an immune 
response. Whether involving the heart, kidneys, or 
brain, microvascular dysfunction sets into motion 
a spiral of chronic low-grade inflammation which is 
subsequently made worse by a host of risk factors 
[243-250]. Coronary microvascular dysfunction is 
increasingly recognized as a contributor to poor 
outcomes in the AIDs [251].

Rheumatoid arthritis (RA), the most common AID, 
with a 3:1 female-to-male pattern of involvement, 
characterizes the intertwined relation between the 
AIDs and heart disease. Most individuals with RA die 
of cardiovascular causes [252-255]. Hypertension 
is present in 50-70% of subjects [256-260]. Blood 
inflammatory markers are commonly elevated 
[261, 262]. Diminished coronary flow reserve, 
microvascular and diastolic dysfunction are found 
in significant numbers of people with RA even in 
the absence of cardiovascular symptoms [263-
272]. One study found echocardiographic evidence 
of ischemia in 67% of RA subjects, over twice that 
seen in the control group (31%), and nearly that in 
diabetics (79%) [273]. Such ischemic phenomena 
lead to fibrosis and remodeling of the myocardial 
wall. Ventricular dysfunction, both diastolic and 
systolic, are present in 30-50% of subjects [274-
279].

Studies in women with SLE found decreased 
coronary flow reserve compared with healthy 
controls. The degree of reduction is proportional to 
disease activity and duration [280-288]. One study, 
conducted over 5 years, examined SLE patients 
with chest pain using MRI and CT angiography and 
found up to half had microvascular ischemia in the 
absence of obstructing lesions in large coronary 
vessels. After 5 years most had persistent chest 
pain, and nearly half had similar or worsened 

myocardial perfusion [289]. Other studies find 
that a high percentage of Individuals with SLE have 
subclinical myocardial injury [290].

Systemic sclerosis (scleroderma), which primarily 
involves connective tissues and has a female-to-
male preponderance of up to 8:1, is characterized 
by skin sores, more common in the fingers and 
toes, and fibrosis affecting the skin and other 
organs like the lungs [291-293]. Primary myocardial 
involvement and blunted coronary flow reserve 
are common early features [294-299]. One study 
employing cardiac MRI found at least one cardiac 
abnormality in 75% of subjects with scleroderma. 
Other findings included diastolic dysfunction 
(35%), reduced ejection fraction (23%), and wall 
motion abnormalities (31%) [300].

Another MRI study in scleroderma patients with no 
history of heart symptoms found that, on average, 
45% already had myocardial fibrosis. This increased 
to 59% in subjects with more diffuse disease. Almost 
80% had subendocardial perfusion defects with 
associated elevated blood inflammatory markers 
[301]. One can only conclude that fibrosis as well 
as systolic and diastolic ventricular dysfunction 
are the result of chronic inflammation induced by 
microvascular ischemia. Such a connection is seen 
vividly in the commonly encountered entity known 
as Raynaud's phenomenon.

Raynaud's phenomenon, seen in multiple AIDs, is 
a microvascular disorder characterized by episodic 
vasospasm and ischemia most commonly associated 
with cold exposure [302, 303]. Raynaud's, a 
frequent accompaniment of scleroderma, causes 
digital ischemia that may result in chronic skin 
ulcers. Cardiac imaging with thallium-201 found 
simultaneous cold-induced perfusion defects in the 
heart, even in subjects without cardiac symptoms, 
highlighting the systemic nature of microvascular 
dysfunction [304-307]. Along this same line, retinal 
microvascular abnormalities have been described 
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in rheumatoid arthritis [308, 309], SLE [310-313], 
scleroderma [314, 315], multiple sclerosis [316, 
317], type 1 diabetes [318-320], inflammatory 
bowel disease [321, 322], Kawasaki's disease 
[323], Sjögren's syndrome [324] and autoimmune 
thyroid disease [325]. As Galen claimed, the heart 
and arteries function as one.

Since the 1980s heart rate variability (HRV), which 
assesses the beat-to-beat fluctuations in cardiac 
rhythm, has been regarded not only as a strong 
indicator of cardiac health but a leading predictor 
of all-cause morbidity and mortality [326]. Easily 
obtainable with standard ECG equipment or 
wearable devices, the most common methods are 
known as time- and frequency-domain analyses 
[327-330]. Decreased HRV has been reported in 
every single chronic disease, including the AIDs. 
In addition, decreased HRV is seen in many acute 
conditions including COVID-19 infection and the 
long-COVID syndrome [331-337].

HRV is said to reflect moment-to-moment changes 
in autonomic balance, i.e., between sympathetic 
and parasympathetic pathways, which, 
furthermore, is said to drive all adaptive cardiac 
functions. Early in the 20th century Nobel Prize-
winning neurophysiologist Charles Sherrington, in 
his highly influential work The Integrative Action of 
the Nervous System (1906), advanced the concept 
of the 'dominant brain' claiming that all bodily 
functions were under the control of the brain 
[338]. This assumption formed the basis of J. N. 
Langley's 1903 work on the autonomic nervous 
system which, in his formulation, consisted of a 
network of one-way outflow pathways originating 
in the brain that either increased (sympathetic) 
and decreased (parasympathetic) heart rate [339]. 
Such notions are now generally regarded as highly 
problematic if not outright wrong [340].

Decreased HRV has been reported in rheumatoid 
arthritis [341-343], SLE [344-346], scleroderma 

[347-349], multiple sclerosis [350-352], Guillain-
Barré syndrome [353, 354], psoriatic arthritis 
[355, 356], inflammatory bowel disease [357-359], 
Sjögren's syndrome [360-362], type 1 diabetes [363-
365], Behçet's disease [366, 367], autoimmune 
thyroid disease [368] and more. But what does 
decreased HRV actually imply? Studies indicate it 
is associated with higher average heart rate [369-
373] along with stiffening of arteries [374-381] both 
of which reflect heightened sympathetic activity. 
In addition, numerous studies document a tight 
inverse relation between HRV and inflammation: 
as inflammatory markers increase HRV decreases 
[382-387]. Decreased HRV is a hallmark of 
hypertension, obesity, diabetes and the metabolic 
syndrome all of which are characterized by 
microvascular dysfunction, increased sympathetic 
activity and systemic inflammation [388-392].

Researchers claim that imbalance between 
sympathetic and parasympathetic systems, aka 
'cardiac autonomic neuropathy', forms the basis 
of the AIDs [393-399]. And because HRV studies 
consistently point to diminished parasympathetic 
activity they conclude that the vagus nerve in some 
manner possesses anti-inflammatory properties 
[400-407]. On this basis they seek strategies 
to augment parasympathetic activity such as 
enhancement of cholinergic nerve transmission 
and implantation of vagal nerve stimulator devices 
[408-419]. But all of this is premised on the 
dominant brain model and whether or not the 
autonomic nervous system actually controls the 
heart.

In a recent article examining the energetic basis 
of the neurodegenerative disorders we show 
that both the brain and peripheral nerves derive 
current flow through the cerebrospinal fluid and 
extracellular fluid pathways [420]. Diminished 
energy generation in the blood impacts current 
flow through the nervous system. In sudden cardiac 
arrest there is immediate cessation of all nerve 
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transmission and brain function indicating the 
primacy of the heart and cardiovascular system.

Decreased HRV has less to do with autonomic 
imbalance than decreased energy generation in the 
blood. The kidneys are the first organ to sense this 
state of affairs and, through the renin-angiotensin 
system, induce activation of the sympathetic axis 
via the adrenals so as to increase energy generation 
by the heart. This, in turn, diverts current flow from 
parasympathetic pathways. It is excess sympathetic 
not decreased parasympathetic activity that best 
correlates with inflammation and reduced HRV 
which, in the end, is just another way of assessing 
microvascular dysfunction. The AIDs are primarily 
energetic in nature. But this leaves us with a 
plethora of questions regarding the nature of the 
immune system that must now be addressed.

RETHINKING IMMUNITY & 
AUTOIMMUNITY

What we now know as the science of immunology 
has its origins in the closing decades of the 19th 
century. It is difficult to separate concepts of 
immunity that emerged during this era from early 
biological ideas regarding the nature of species and 
speciation. By the time immunologists came onto 
the scene Darwin's theory of evolution thoroughly 
dominated biological thought and strongly 
influenced not only the focus of experimental 
research but how facts would be interpreted.

Darwin had broken rank with ancient ideas 
concerning the nature of species and regarded 
them as evolutionarily emergent entities that 
spontaneously arose among inbreeding groups of 
organisms, a notion which would seem to engender 
a chicken and egg conundrum. Without resolution 
of such incongruities evolution became conceived 
as the sole driver of progressive speciation; 
species, in turn, were regarded as distinct and 
differentiated biological entities which, in the end, 

were genetically determined. This is 20th century 
biology in a nutshell.

As medical historian Pauline Mazumdar recounts 
in her insightful work Species and Specificity: An 
Interpretation of the History of Immunology [420], 
there arose two opposing factions in 19th century 
biology, what others have referred to as 'splitters' 
and 'lumpers,' those who would explain immune 
phenomena on the basis of their differences and 
who saw experimentation as a means of making 
increasingly fine distinctions, and those who 
sought to integrate experimental phenomena into 
an overarching unity. One group saw variation 
and divergence, the other unity within diversity. 
These two organic modes of perceiving immune 
phenomena locked into fierce conflict during the 
closing decades of the 19th and early decades of 
the 20th centuries.

German bacteriologist Robert Koch argued forcibly 
for the distinct identity and autonomy of the 
various bacterial species. His opinions dominated 
late-19th century bacteriological thought. 
Different bacterial species, in turn, produced their 
characteristic clinical syndromes on the basis of 
specific attributes. On this logic it only stood to 
reason that such sicknesses should be treated with 
specific medicines.

Physician-chemist Paul Ehrlich, arguing that 
all cellular functions were chemical in nature, 
advanced the notion of Abs and antigens (Ags). 
All immune reactions, he claimed, were based on 
specific molecular interactions in which the two 
opposing entities joined together in lock-and-key 
fashion (Figure 2). By the same token Ehrlich, an 
early proponent of cell receptor theory, argued that 
specific drugs, what he called 'magic bullets', could 
combat a host of specific diseases. This forms the 
basis of virtually all 20th century pharmacological 
strategies including vaccines.
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Figure 2: Physician-chemist Paul Ehrlich, co-recipient of the 1908 Nobel Prize, claimed that antigen-
antibody interactions formed the basis of the immune response. 

(From: https://fineartamerica.com/art/paul+ehrlich) 

In the 1880s biologist Elie Metchnikoff observed 
under the microscope cells of developing starfish 
larvae wandering about in the tissues. Suspecting 
they played a role in the breakdown of cellular 
substances, he introduced a rose thorn into an 
organism and watched as cells surrounded the 
foreign object [422-424] (Figure 3). Calling them 

phagocytes or 'eating cells', Metchnikoff argued 
that such cells, now called macrophages, formed 
the basis of the immune response and were part 
of a more general set of primitive functions, an 
internal digestive system so to speak, the purpose 
of which was to mediate the breakdown of 
molecular and cellular substances (Figure 4).
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Figure 3: Zoologist Elie Metchnikoff, discoverer of phagocytosis and phagocytic cells, co-recipient of the 
1908 Nobel Prize, argued that such cellular activities formed the cornerstone of the immune response. 

(From: https://fineartamerica.com/featured/1-elie-metchnikoff-ilya-ilich-mechnikov-mary-evans-picture-
library.html)
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Figure 4: Stained histologic preparation of macrophage. 

(From: https://openeducationalberta.ca/mlsci/chapter/macrophage/)

It is fact that the main advocates of the two 
opposing factions, Ehrlich and Metchnikoff, jointly 
shared the 1908 Nobel Prize – seemingly a nod in 
each direction – but their fates sharply diverged: 
the cellular perspective fell into steep decline for 
almost a half-century as chemists grabbed the 
reins and sought to define the immune response 
on a molecular basis, a period immunologist 
Arthur Silverstein, in his acclaimed work A History 
of Immunology, calls the Dark Age of experimental 
immunology [425].

This clash of ideas can be seen in terms of a broader 
historical dialectic. It is said that controversy is 

the most productive form of scientific discourse. 
When assumptions are roundly agreed upon, 
they are more likely to remain unquestioned and 
unexamined. Disputation forces concepts to be 
made explicit. Over the course of the 20th century, 
each opposing perspective would have ample 
opportunity to state its case and it would be left 
to later generations to draw necessary conclusions 
and complete the synthesis.

In 1948 Rose observed agglutination of red blood 
cells (RBCs) in a woman with rheumatoid arthritis, 
the first formal recognition of auto-Abs. The auto-
Ab, called rheumatoid factor, was later found to 
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be an IgM Ab directed against IgG Abs [426]. In 
1951 Harrington injected sera from subjects with 
idiopathic thrombocytopenic purpura into healthy 
volunteers and observed an abrupt decrease in 
their blood platelet counts [427]. Auto-Abs had 
reacted with volunteers' platelets and caused 
their destruction. In the mid-1950s various studies 
found that serum from subjects with autoimmune 
thyroiditis had auto-Abs directed against 
thyroglobulin. Since that time hundreds of auto-
Abs capable of reacting against self-tissues have 
been described in the AIDs. Auto-Abs are now 
regarded as the hallmark of the AIDs and the gold 
standard for diagnosis [428, 429].

In the 1960s researchers distinguished between 
two classes of lymphocytes, so-called thymic-
derived T-cells, responsible for cell-mediated 
defense functions, and B-cells, originating in 
the bone marrow, involved with Ab production. 
T- and B-cell responses are antigenically driven 
and directed toward specific pathogenic sources, 
whether infectious, toxic, neoplastic, or the AIDs. 

Increasingly scientists came to distinguish between 
'adaptive' immune responses, involving Ag/Ab 
and receptor-mediated responses, and 'innate' 
immune functions subsumed by the phagocytic 
system [430].  

In the late 1950s Australian biologist MacFarlane 
Burnett, a staunch critic of chemically oriented 
theories, advanced the first major synthesis of 
20th century immunology with his Clonal Selection 
Theory: all immune activities, including synthesis 
of molecular mediators, are effected by cellular 
functions (Figure 5). Burnett jointly shared the 
1960 Nobel Prize with Peter Medawar. Thereafter 
auto-Abs, and thus the AIDs, became conceived 
as a consequence of mutations in particular cell 
lines, aka 'forbidden clones', that proliferated and 
synthesized self-directed Abs. Studies surfacing 
during the SARS-CoV-2 pandemic call into question 
the primacy of the Ab response and adaptive 
immune system as well as the nature of auto-Abs.
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Figure 5: Biologist MacFarlane Burnett, co-recipient of the 1960 Nobel Prize, argued for the primacy 
of the cellular response in the immune reactions. Advanced the Clonal Selection Theory which 

explains the genetic basis of the adaptive immune response.

(From: https://www.bilgiustam.com/frank-macfarlane-burnet-kimdir/)

During COVID-19 infection, Abs rarely appeared in 
the blood before 12 days and sometimes not for 
21 days. In many cases symptoms resolved before 
Abs even appeared. Once present in the serum, 
anti-spike protein IgG Ab levels waned and by 
3-5 months were usually negligible [431-440]. By

contrast, Ag-specific memory B cell levels often 
remained unchanged for 6 months or more [441]. 
Evidence clearly points away from Abs and toward 
cellular dynamics in the immune response.

Another provocative line of evidence: a significant 
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portion of COVID-19 infected individuals, as 
confirmed by PCR testing, never developed an 
Ab response. Such 'nonseroconverters' ranged 
from a low of 5% in one study to a high of 36% in 
another; other studies found rates in the 15-25% 
range. Nonseroconverters tended to have milder 
disease, more rapid viral clearance and lower 
blood inflammatory marker levels [442-447]. Such 
findings point to the pivotal role of the innate 
immune response in early infection.  

Other studies found that individuals with 
more severe disease had higher Ab levels than 
asymptomatic or mildly affected cases [448-
464]. Hospitalized patients had Ab levels up to 
3000-fold higher than milder cases or during the 
recovery period [465-468]. Researchers have no 
satisfying explanation. Another study found obese 
individuals with the metabolic syndrome, a group 
which had worse clinical outcomes, also had higher 
Ab levels [469]. This is to say that mildly affected 
and asymptomatic individuals, those with the best 
clinical outcomes, paradoxically had the lowest Ab 
responses.

Such findings make no sense unless one accepts 
that Abs have only a supporting role in the immune 
response. It seems likely that Ab production is a 
fallback mechanism implemented when innate 
immunity is deficient. This inconvenient fact 
overturns Ehrlich's 120 year-old entrenched 
dogma. By the same token it explains why 
COVID-19 vaccines, which stimulate Ab production 
and provide short-term protection, don't confer 
long-term immunity. Equally damaging to modern 
immune theory is the auto-Ab phenomenon.

COVID-19-infected subjects had marked increases 
in auto-Ab levels compared with non-infected 
individuals. As in the AIDs, an array of auto-
Abs directed against cytokines, chemokines, 
cell surface proteins as well as RNA and DNA 
appeared during the course of infection. Auto-Abs, 

depending on type, were present in 10%-50% of 
cases. Studies found that auto-Ab levels tracked 
directly with rising levels of anti-SARS-CoV-2 Abs 
and with disease severity suggesting they formed 
spontaneously during the course of the illness 
[470-480]. What does this mean?

Genetic mechanisms explain neither the 
appearance of auto-Abs during the acute phase of 
the illness nor formation of auto-Abs themselves. 
Genes code for the primary structure of proteins, 
i.e., the amino acid sequence, but the secondary
and tertiary structure, i.e., the 3D conformation
of Abs, is determined solely by energy dynamics.
Once formed, primary polypeptide chains are
surrounded by cell water, called the hydration
layer, and interactions between separate chains as
well as folding itself are effected on the basis of
energy-driven colloidal interactions [481-485].

Numerous early 20th century scientists questioned 
Ehrlich's notion of lock-and-key specificity. By that 
time tens of thousands of antigenic substances had 
been identified and it was argued that there could 
not possibly be enough genes to code for such 
a vast number of Abs. Austrian Researcher Karl 
Landsteiner, discoverer of the ABO blood groups, 
argued in favor of a much smaller number of Abs 
with overlapping specificities. Landsteiner has been 
proven correct on this point. He also argued that 
electrochemical forces mediate specific affinity. In 
his electrolysis experiments, charged acidic and 
alkaline colloids not only moved toward opposite 
poles but actively precipitated each other [486].

When undergoing conformational change, 
aka allosterism, proteins reorganize three-
dimensionally to form dynamic linkages between 
often widely separated domains, either on the 
same chain or between different chains. Such 
activities are effected by hydrogen bonding and 
dipole-dipole interactions that originate in the 
surrounding fluid milieu. Ag/Ab interactions occur 
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in the same way. Evidence indicates that auto-
Abs are simply misfolded proteins whose altered 
specificity overlaps with the body's own tissues. 
On this basis one is once again drawn back to blood 
energy dynamics.  

The question thus arises as to the actual role auto-
Abs play in the genesis of the AIDs. There has been 
increasing recognition of the presence of a wide 
array of auto-Abs in normal, healthy individuals. 
Called 'natural' auto-Abs they are said to occur in 
5-10% of healthy blood donors and up to 50% in 
selected groups of asymptomatic individuals [486-
490]. Some argue they result from forbidden clones 
due to failure of clonal selection; others regard 
them as evolutionarily conserved mechanisms that 
clear 'physiologic debris' from the body. But why 
would this be necessary when there are phagocytic 
cells?

In recent decades evidence necessitated 
formulation of a new class of disorders, the 
'autoinflammatory diseases', to accommodate 
a growing number of chronic conditions like 
Familial Mediterranean Fever, Still's disease and 
Behçet's syndrome characterized by episodic 
inflammation associated with fever, skin rashes, 
ocular manifestations and arthritis in the absence 
of auto-Abs [491-496]. Such disorders, which are 
said to have a genetic basis, are now recognized to 
originate from innate immune dysfunction.

Evidence thus points to one inescapable conclusion: 
auto-Abs are neither necessary nor sufficient to 
explain the AIDs.  This being the case, where do we 
look for answers?

SPLEEN & INTERNAL DIGESTION

The spleen was overlooked for much of the 20th 
century and its functions incompletely understood. 
As the only major organ that can be removed without 
immediate dire consequence it was regarded by 
many as mainly a storage compartment for red and 
white blood cells. The so-called ductless gland has 
been a source of speculation throughout history.

Structurally possessing connections only to 
the vascular system, and beginning its early 
development as an ingrowth of blood vessels and 
primitive immune cells, its entire raison d'être 
seems tied to the blood and vascular system [497, 
498]. Plato claimed it kept the blood 'bright and 
shining'. Aristotle and Galen regarded its functions 
as primarily digestive in nature. In addition to its 
role in immunity the spleen functions as a filter 
for clearance of aging cells, foreign pathogens 
and other substances from the blood as well as a 
serving as a reservoir for blood elements.

The spleen is formed by alternating strata known 
as the white pulp, composed of lymphocytes and 
macrophages, and the red pulp, consisting of 
sinusoidal channels laden with RBCs, lymphoid 
elements and macrophages (Figure 6). Between 
the white and red pulp lies the marginal zone 
consisting of other lymphoid and macrophage 
lines. While macrophages in the white pulp are 
phagocytic and serve classic immune functions, 
red pulp macrophages perform scavenger and 
metabolic duties like RBC breakdown, bile pigment 
production, and iron recycling. Another subset, M2 
macrophages, engage in regenerative and repair 
functions.

Thorp KE, Thorp JA, Northrup C, Peters SE, Thorp EM, Ealy HL, et al. Energy Dynamics in the Autoimmune Disorders: The Unity of Immunity. 
G Med Sci. 2023;4(1):406-470. https://www.doi.org/10.46766/thegms.immuno.23082901 

422

https://www.doi.org/10.46766/thegms.immuno.23082901


Energy Dynamics in the Autoimmune Disorders: The Unity of Immunity

18

Figure 6:  Contrast-enhanced CT image of the upper abdomen with zebra-striping of the spleen in early 
arterial phase.  Lighter areas represent the highly vascular red pulp which opacifies first.  Darker areas 
represent delayed opacification in the less vascular white pulp.  Upon equilibration moments later the 

spleen becomes uniformly dense.
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In the early 20th century surgeons increasingly 
performed splenectomy for enlargement of the 
spleen, aka hypersplenism. In the late 1920s 
reports began to trickle in describing cases of 
sudden, severe sepsis and death in otherwise 
healthy individuals who had undergone 
splenectomy years, sometimes decades, 
earlier. It wasn't until the 1950s that the causal 
connection became clear [499]. Now called OPSI, 
an acronym for 'overwhelming post-splenectomy 
infection', patients develop bacteremia caused 
by encapsulated microorganisms, usually without 
any obvious source of infection, along with septic 
shock and disseminated intravascular coagulation. 
Mortality rates are in the 50-70% range with death 
ensuing over 24-48 hours [500-502].

Over the next several decades clinical syndromes 
very much similar to that seen with OPSI were 
recognized in people with intact spleens and 
gradually the concept of 'functional hyposplenism' 
evolved  [503-507]. Originally described in children 

with sickle cell anemia, it occurs more frequently 
than previously thought and can be seen in celiac 
disease, alcoholic liver disease, hepatic cirrhosis, 
lymphomas and a spectrum of AIDs including SLE, 
rheumatoid arthritis, multiple sclerosis, Sjögren's 
syndrome, ulcerative colitis and autoimmune 
thyroiditis [508-516].

When stained blood smears from subjects 
with functional hyposplenism are examined 
microscopically so-called Howell-Jolly bodies, 
remnants of RBC nuclei normally removed by the 
spleen, along with 'pitted' RBCs containing defects 
in their membranes, are observed [517] (Figure 7). 
Radionuclide scans show decreased colloid uptake 
by the spleen suggesting impaired phagocytosis. 
The spleen is usually smaller than normal. Thus, 
in addition to an immune defect and increased 
susceptibility to infection, evidence points to 
impaired filtering by the spleen.  Where does all 
this lead us?
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Figure 7: Stained blood smear of Howell-Jolly bodies seen in hyposplenism. Howell-Jolly bodies 
represent basophilic remnants of RBC nuclear material that are normally removed by phagocytosis 

in the spleen.

In the ancient framework blood was said to be 
composed of four humors. Health was defined as 
a state of balance (krasis) between the humors. 
Sickness, on the other hand, arose from imbalances 
with one or another humor present in excess. The 
humor known as black bile (melan chole or atra 
bilis) was a central concept in the ancient system 
that endured well into the early scientific era [518]. 
Based on natural correspondences derived from 
the Earth-Water-Air-Fire cosmology, it was partly 
empirical and partly speculative in origin. No other 
aspect of ancient thought has been the subject of 
more scorn and ridicule than black bile.

The ancients regarded black bile as a toxic 
substance that caused a wide range of disease. 
There were references to it in the Hippocratic text 
On the Nature of Man but we never get a clear idea 
of what black bile actually was or what it did. From 
the earliest time the spleen was regarded as a key 
player in its disposition. Galen, the 2nd century 
synthesizer of ancient medical thought, was the 
first to elucidate the nature of black bile.

Galen placed great emphasis on the role of the 
spleen in health and disease. He claimed it was 

Thorp KE, Thorp JA, Northrup C, Peters SE, Thorp EM, Ealy HL, et al. Energy Dynamics in the Autoimmune Disorders: The Unity of Immunity. 
G Med Sci. 2023;4(1):406-470. https://www.doi.org/10.46766/thegms.immuno.23082901 

425

(From: https://4.bp.blogspot.com/_EUkaWdQ4i64/TQjAJIV1XBI/AAAAAAAABds/
D5U1oPMUP3E/s400/hn.jpg)

https://www.doi.org/10.46766/thegms.immuno.23082901
https://4.bp.blogspot.com/_EUkaWdQ4i64/TQjAJIV1XBI/AAAAAAAABds/D5U1oPMUP3E/s400/hn.jpg
https://4.bp.blogspot.com/_EUkaWdQ4i64/TQjAJIV1XBI/AAAAAAAABds/D5U1oPMUP3E/s400/hn.jpg


Energy Dynamics in the Autoimmune Disorders: The Unity of Immunity

21

involved in the transformation and excretion of 
black bile. Black bile, he said, possessed a sharp, 
biting quality. It accumulated naturally during 
the fermentation of grapes into vinegar. It had a 
corrosive action that induced effervescence on 
contact with calcareous (chalky) earth. And he 
linked it to the incompletely digested food and 
juices in the condition we know as acid reflux and 
heartburn. But the ancients had no concept of 
acid and thus Galen simply referred to it as oxys. 
He claimed that the spleen attracted oxys to aid in 
digestion and, moreover, somehow used it for its 
own nourishment [519].

Soon after his discovery of lysosomes in the 1950s, 
Belgian biologist Christian de Duve under electron 
microscopy observed delivery of membrane-bound 
cellular material to lysosomes and coined the term 
autophagy to designate the orderly process by which 
cells self-digest [520-522]. During autophagy acid 
is actively concentrated in lysosomes and catabolic 
enzymes activated not unlike in the stomach. 
Autophagy not only culls aging and damaged cell 
structures but generates energy during periods of 
nutrient deficiency. Evidence suggests it represents 
a frontline defense against infection and, when 
deficient, is associated with various inflammatory 
disorders including the AIDs (Figure 8).

Figure 8:  Electron microscopy of a macrophage containing phagosomes, light-colored inclusion bodies 
with ingested materials (arrows), lysosomes, dark-colored intracellular bodies (arrows), and phago-

lysosomes in varying stages of digestion.

Thorp KE, Thorp JA, Northrup C, Peters SE, Thorp EM, Ealy HL, et al. Energy Dynamics in the Autoimmune Disorders: The Unity of Immunity. 
G Med Sci. 2023;4(1):406-470. https://www.doi.org/10.46766/thegms.immuno.23082901 

426

https://www.doi.org/10.46766/thegms.immuno.23082901


Energy Dynamics in the Autoimmune Disorders: The Unity of Immunity

22

Many infectious agents, including the SARS-CoV-2, 
gain access to the body by colonizing epithelial 
cells where they attempt to reproduce and spread. 
Autophagy is the primary cellular response to such 
intrusions. Bacteria are enveloped in a membrane-
bound structure, the phagosome, which fuses 
with acid-laden lysosomes to initiate digestion. 
If autophagy in epithelial cells is effective then 
further spread is averted; in cases where it is 
not the organism reproduces, initiates cell lysis, 
and spills into the extracellular fluid (ECF) space. 
During cell lysis, damage- and pathogen-associated 
molecules as well as cytokines are released which 
attract local macrophages [523-525].

Activated macrophages converge at the infection 
site and initiate phagocytosis to contain spread. 
Macrophages possess a multitude of acid-driven 
mechanisms by which to dispose of the infectious 
vector: the agent is walled-off in a sealed 
membrane limiting access to nutrients; release of 
polypeptides like defensin and cathelicidin destroy 
the outer bacterial membrane; acid and metals 
within the phagosome trigger the organism's 
own self-digestive enzyme systems; the catabolic 
degradation process amplifies to produce highly 
reactive substances like nitric oxide and free radicals 
which further degrade the ingested particle.

If such autophagy-driven mechanisms are 
successful then infection is contained and the 
immune response terminates; if insufficient then 
macrophages release pro-inflammatory cytokines 
to elicit support from circulating neutrophils and 

the adaptive immune system. Spread of infection 
thus involves successive breaches of barrier 
functions, first in epithelial cells, then macrophages 
in the ECF space, related to inadequate autophagy. 
Metchnikoff was correct. In chronic energy deficient 
states like the AIDs this process goes haywire.  

Studies assessing splenic hypofunction in 
various AIDs like SLE, rheumatoid arthritis and 
inflammatory bowel disease for example, found 
impaired clearance of immune complexes and 
RBCs from the blood with inverse relation between 
the quantities of such substances and splenic 
hypofunction [526-548]. It is believed that renal 
damage accompanying SLE is related to deposition 
of Ag/Ab complexes in the kidneys due to impaired 
splenic filtration and saturation of the phagocytic 
system. The most dramatic example of deficient 
internal digestion is seen in a phenomenon known 
as neutrophil extracellular traps (NETs).  

Neutrophil extracellular traps (NETs) are mesh-like 
structures that protrude from suicidal neutrophils 
intended to trap particulate materials [549-556] 
(Figure 9). Recruitment of neutrophils, highly 
phagocytic white blood cells, imputes a primary 
failure of macrophage functions in the spleen and 
ECF compartment. Increased numbers of NETs, 
called NETosis, are found in a wide variety of 
pathologic conditions including COVID-19 infection 
and the AIDs. NETs contain antigenic intracellular 
materials like DNA, RNA and oxidized proteins that 
trigger auto-Ab formation, worsening of endothelial 
dysfunction, and intravascular thrombosis.
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Figure 9:  Neutrophil extracellular traps (NETs). Web-like chromatin fibers expelled from suicidal 
neutrophils intended to trap and bind pathogenic materials. Excess accumulation of NETs, called 

NETosis, plays a pathogenic role in a wide range of inflammatory disorders, both infectious and non-
infectious, as well as cancers, heart disease and stroke.

Autophagy impacts virtually every aspect of innate 
immune function. Impaired autophagy, in turn, is a 
hallmark of the AIDs [557-567]. At the intersection 
between the two pathologic states, we once again 
stumble upon microvascular dysfunction and 
inflammation [568-571]. Autophagy is an energy-
driven process: acid is actively pumped into 
lysosomes against its concentration gradient by 
selective ion channels. In energy deficient states 
this mechanism is among the first to fail. Impaired 
autophagy is associated with mitochondrial and 
ion channel dysfunction [572-582]. Autophagic 
dysfunction is associated with elevated pro-
inflammatory cytokines and other inflammatory 
markers [583-585].

Once this dynamic is set into motion a series 
of lethal events ensue: impaired mitochondrial 
function, compounded by lysosomal dysfunction, 
results in buildup of intracellular acid and reactive 
oxygen species. Progressive acidification of the 
cytoplasm impacts functions like protein synthesis 
and folding. Such events, in turn, trigger cytokine 
release, NLRP3 inflammasome formation, and cell 
death (apoptosis). Spillage of cell contents into 
the ECF space further aggravates already impaired 
phagocytic functions initiating a self-amplifying 
spiral of deterioration. This is likely what the 
ancient concept of black bile hinted at.
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The digestive system thus represents an ensemble of 
functions that orchestrate the orderly breakdown, 
assimilation and elimination of organic substance. 
The two primary digestive organs, stomach and 
spleen, have conjoined origins in the upper left 
abdomen and use similar means centered around 
acid metabolism and acid-activated enzymes, i.e., 
black bile, to mediate their activities.  

The two organs constitute an integrated functional 
nexus: the stomach takes in material from the 
outside which, upon decomposition, is drawn 
upward through intestinal veins to the liver where 
it is altered and subsequently transported through 
arteries to the ECF space for assimilation by cells; 
the splenic phase of the cycle, the internal digestive 
system proper, begins with the breakdown of 
intracellular materials via autophagy, extrusion of 
waste into the ECF space, uptake by phagocytic 
cells, and return of materials to the spleen for 
elimination or recycling. The two aspects of 
digestion are united through the cardiovascular 
system and blood. This leads us to consider one 
final aspect of splenic function.

A connection between the spleen and heart was 
first recognized around 1950 when researchers 
observed that electrical stimulation of splenic 
nerves improved ventricular function in laboratory 

dogs [586, 587]. They suggested that the spleen 
played a supporting role in cardiac function but the 
report generated little interest and sat on the shelf 
for over a half-century.

More recent studies found that during acute 
events like heart attack, stroke, infection and sepsis 
splenic volume decreases and, after a variable 
period of days, returns to its previous size. Splenic 
contraction appears to play an important role in 
such events and correlates with increased numbers 
of RBCs, monocytes, neutrophils, and lymphocytes 
in the blood. Studies suggest that splenic volume 
decreases in relation to disease severity. In recent 
years we thus find increasing references to the 
'cardiosplenic axis' [588-592].

The spleen varies in size but on average is about 
10×6×3cm and, due to its sinusoidal structure, is 
capable of greatly expanding and storing up to 20-
30% of total blood volume [593-595]. In disease 
states like heart failure splenic size correlates 
positively with cardiac output and inversely with 
blood pressure. Decreased splenic size, influenced 
by hemodynamic factors such as blood volume 
and sympathetic nerve activity, is an independent 
predictor of poor outcomes in heart failure and 
other conditions [596-598] (Figure 10).
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Larger than normal spleen size has been reported 
in elite endurance athletes and indigenous 
populations that engage in prolonged breath-
holding activities beneath the sea surface [599]. 
Elite athletes not only have larger splenic volume 
but enhanced contractile capacity which, in 
response to exercise, dramatically increases blood 
RBC and hemoglobin levels. The spleen contracts 
during high-altitude mountain climbing as well, 
serving as a sort of 'auto-transfusion' to buffer the 
low-oxygen tension in the upper atmosphere [600-
602].

Scientists claim such adaptive responses are 
intended to increase blood oxygen levels and 
while this is no doubt correct there is a more 

compelling reason. In earlier papers we show that 
the preconditioning (PC) phenomenon, a period of 
heightened systemic protection following periods 
of stress like ischemia or exercise, is mediated by 
enhanced energy generation in RBCs [603, 604]. 
The PC response is now recognized to be the most 
powerful protective mechanism yet discovered.  

It appears likely that splenic contraction amplifies 
the effects of the PC phenomenon. It is also likely 
that its contraction occurs early in other systemic 
assaults like COVID-19 infection and provides 
an energy boost for immune cells that are also 
released. This would explain the generally milder 
course of illness in young and healthy people as 
well as higher morbidity and mortality in aging 
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Figure 10:  The many shapes and sizes of the spleen in health and disease.  (Courtesy of 
Cynthia Wheeler, MD & Robert Hills, DO)
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and infirm populations in whom the PC response 
is blunted or absent. And it is likely that splenic 
contraction plays into the immune dysfunction 
seen following acute events like heart attack and 
stroke.  To wit:
In response to systemic injury and infection large 
numbers of monocytes are released from the red 
pulp of the spleen, hone in on affected organs, and 
differentiate into macrophages. So-called M1 and 
M2 macrophages effect not only the phagocytic/
digestive phase of the response but are central to 
healing and regeneration [605-608].

Many chronic heart failure cases develop after 
heart attack and most of these result from 
failure to terminate the inflammatory response 
and transition to the healing phase. Much of 
the damage is mediated by cells originating 
in the spleen. Metabolic activity in the spleen 
increases after such events and is associated with 
activation of pro-inflammatory cells, increased 
C-reactive protein, and endothelial inflammation. 
Mitochondrial dysfunction in splenic derived 
macrophages promotes inflammation and 
suppresses tissue repair [609-616].     

Lab studies in animals document the deleterious 
influence of splenic monocytes on promoting 
inflammation in a wide number of systemic 
conditions including stroke and heart attack, what 
is called the 'systemic inflammatory response 
syndrome' [617-619]. Splenectomy in mice with 
established heart failure reverses pathological 
cardiac changes and inflammation. Splenic cells 
transferred from mice with heart failure to healthy 
mice target the heart and induce immune-mediated 
inflammation and fibrosis. Recipient mice, in turn, 
undergo splenic remodeling and generate their 
own activated pro-inflammatory monocytes [620, 
621].

None of these phenomena make a bit of sense unless 
there is already diminished energy availability 

in the blood, which brings us back full circle to 
microvascular dysfunction and inflammation. 
Inflammation begets more inflammation because 
it is a primary sign of diminished energy generation 
by the cardiovascular system. The spleen and 
internal digestive system, intimately related to 
the heart and blood, cannot complete its assigned 
functions without sufficient energy, highlighting a 
central tenet of ancient medicine: omnia incipit in 
sanguine, everything begins in the blood. Therein 
lies the unity of immunity.

THE GREAT DELUSION

Experimental medicine is exactly what its 
name implies. Since the turn of the 20th century 
scientists have engaged in a grand experiment 
upon populations across the globe to test 
their hypotheses regarding the causal primacy 
of cellular and molecular mechanisms in the 
body. Over the past century science dominated 
intellectual discourse in modern societies and, as 
observed in the arrogant commentary of Sir Peter 
Medawar, sought to establish scientific knowledge 
as invincible and the experimental method as a 
gold standard for attainment of such knowledge. 
This was pure delusion.

Early on in the experimental science experiment a 
rash of interpretive errors regarding cardiovascular 
function, organization of the nervous system, 
immune theory, and the primacy of genetics became 
deeply enmeshed in its theory structure making 
any kind of unifying synthesis all but impossible. 
Medical science became trapped in a conceptual 
labyrinth of its own design and its quest for unity 
and insight as elusive as the mythical Holy Grail. 
In the process science became a never-ending 20th 
century fable. 

Such developments correspond to science 
historian Thomas Kuhn's notion of a paradigm 
collapse. Once a science reaches the point where 
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its knowledge no longer accurately explains 
phenomena, and its theory structure littered 
with errors and internal contradiction, it becomes 
useless and obsolete. Such is the current state of 
scientific medical knowledge. And once a theory 
is shown to be wrong, a logical corollary follows 
that it was wrong from the beginning, which is to 
say scientists should have been more critical and 
circumspect of the theories they propounded. 

By 1970, ten years after receiving the Nobel 
Prize for his Clonal Selection Theory, Macfarlane 
Burnet had soured on experimental medicine. In 
Genes, Dreams and Realities he argued that the 
contribution of laboratory science in unlocking the 
problem of disease had come to an end and that 
further research would amount to little more than 
filling in of details. Most of the breakthroughs in 20th 
century medicine, he noted, were observational in 
nature and not based on experiment.

Burnet claimed that 'too much sensational material 
was being written about the future significance 
of discoveries in molecular biology'. He pointed 
to the increasing burden of chronic diseases and 
lack of meaningful change in their outcomes in the 
previous 3-4 decades. Modern science, he wrote, 
'is by no means the triumphal march toward 
perpetual health and well-being' as popular 

accounts would suggest. By this time science had 
become a collectively shared cultural delusion. 
And far from stunning breakthroughs he warned 
that molecular science 'might release some new 
and nasty problems on a world that already has 
more than it can cope with'. 

Fifty years on Burnet looks like a minor prophet. An 
explosive epidemic of chronic diseases has spread 
across the planet on a scale unrivaled in history. 
Over the last half of the 20th century, one observes 
striking parallel rises in the burden of chronic 
disease and healthcare costs in all industrialized 
nations. Today, 120 years since the advent of the 
modern therapeutic era, medical science has yet 
to cure a single class of disease, and its physicians 
do little more than manage the progressive and 
unrelenting course of these intractable conditions.  

No matter how scientists may wish and hope 
to pull the rabbit out of the hat one more time 
with their magic bullets there is no Plus Ultra. 
Scientific knowledge has reached its limit and the 
experimental era is dead. The length of time spent 
beating a dead horse has no bearing on the degree 
of death. Meanwhile societies must come to terms 
with this monumental failure and begin to devise 
and implement solutions to confront a looming 
disaster.
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